Zobrazeno 1 - 10
of 77
pro vyhledávání: '"Morales Rodrigo, Cristian"'
Publikováno v:
J. Differential Equations, 390, (2024), 494-524
In this paper we deal with an eigenvalue problem in an interface elliptic equation. We characterize the set of principal eigenvalues as a level set of a concave and regular function. As application, we study a problem arising in population dynamics.
Externí odkaz:
http://arxiv.org/abs/2307.01818
Autor:
Maia, Braulio B.V. a, Molina-Becerra, Mónica b, Morales-Rodrigo, Cristian c, Suárez, Antonio c, ⁎
Publikováno v:
In Journal of Differential Equations 5 May 2024 390:494-524
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 October 2023 526(1)
In this paper we establish a unilateral bifurcation result for a class of quasilinear elliptic system strongly coupled, extending a bifurcation theorem due to J. L\'opez-G\'omez. To this aim, we use several results, such that Fredholm operator of ind
Externí odkaz:
http://arxiv.org/abs/1802.09109
Autor:
Costa, Marcos Antonio Viana, Carranza, Yino Cueva, Morales-Rodrigo, Cristian, Suárez, Antonio
Publikováno v:
Discrete & Continuous Dynamical Systems - Series B; Jan2025, Vol. 30 Issue 1, p1-17, 17p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 February 2020 482(1)
This paper deals with a nonlinear system of partial differential equations modeling a simplified tumor-induced angiogenesis taking into account only the interplay between tumor angiogenic factors and endothelial cells. Considered model assumes a nonl
Externí odkaz:
http://arxiv.org/abs/1202.4695
Publikováno v:
The article is under the title Global existence vs. blowup in a fully parabolic quasilinear 1D Keller-Segel system. Nonlinear Anal. 75 (2012), no. 13, 5215-5228
We show that the one-dimensional fully parabolic Keller-Segel system with nonlinear diffusion possesses global-in-time solutions, provided the nonlinear diffusion is equal to (1+u)^{-\alpha}, for \alpha < 1, independently on the volume of the initial
Externí odkaz:
http://arxiv.org/abs/1111.1580
In this paper we analyze a mathematical model focusing on key events of the cells invasion process. Global well-possedness and asymptotic behaviour of nonnegative solutions to the corresponding coupled system of three nonlinear partial differential e
Externí odkaz:
http://arxiv.org/abs/0907.0885