Zobrazeno 1 - 10
of 1 392
pro vyhledávání: '"Moosbrugger, A."'
According to a conservative estimate, a 1% reduction in forecast error for a 10 GW energy utility can save up to $ 1.6 million annually. In our context, achieving precise forecasts of future power consumption is crucial for operating flexible energy
Externí odkaz:
http://arxiv.org/abs/2407.08434
For better or worse, JavaScript is the cornerstone of modern Web. Prototype-based languages like JavaScript are susceptible to prototype pollution vulnerabilities, enabling an attacker to inject arbitrary properties into an object's prototype. The at
Externí odkaz:
http://arxiv.org/abs/2311.03919
Autor:
Collaboration, NA48/2, Batley, J. R., Kalmus, G., Lazzeroni, C., Munday, D. J., Slater, M. W., Wotton, S. A., Arcidiacono, R., Ceccucci, A., Bocquet, G., Cabibbo, N., Cundy, D., Falaleev, V., Gatignon, L., Fidecaro, M., Gonidec, A., Kubischta, W., Maier, A., Norton, A., Patel, M., Peters, A., Balev, S., Frabetti, P. L., Gersabeck, E., Goudzovski, E., Hristov, P., Kekelidze, V., Madigozhin, D., Molokanova, N., Polenkevich, I., Potrebenikov, Yu., Korotkova, A., Stoynev, S., Zinchenko, A., Kozhuharov, V., Litov, L., Monnier, E., Swallow, E., Winston, R., Rubin, P., Walker, A., Baldini, W., Ramusino, A. Cotta, Dalpiaz, P., Damiani, C., Fiorini, M., Gianoli, A., Martini, M., Petrucci, F., Savrié, M., Scarpa, M., Wahl, H., Bizzeti, A., Veltri, M., Calvetti, M., Celeghini, E., Iacopini, E., Lenti, M., Ruggiero, G., Behler, M., Eppard, K., Hita-Hochgesand, M., Kleinknecht, K., Marouelli, P., Masetti, L., Moosbrugger, U., Morales, C. Morales, Renk, B., Wache, M., Winhart, A., Wanke, R., Coward, D., Dabrowski, A., Martin, T. Fonseca, Shieh, M., Szleper, M., Velasco, M., Wood, M. D., Cenci, P., Pepe, M., Petrucci, M. C., Anzivino, G., Imbergamo, E., Nappi, A., Piccini, M., Raggi, M., Valdata-Nappi, M., Cerri, C., Fantechi, R., Collazuol, G., Di Lella, L., Lamanna, G., Mannelli, I., Michetti, A., Costantini, F., Doble, N., Fiorini, L., Giudici, S., Pierazzini, G., Sozzi, M., Venditti, S., Bloch-Devaux, B., Peyaud, B., Cheshkov, C., Chèze, J. B., De Beer, M., Derré, J., Marel, G., Mazzucato, E., Vallage, B., Holder, M., Ziolkowski, M., Biino, C., Cartiglia, N., Marchetto, F., Bifani, S., Clemencic, M., Lopez, S. Goy, Dibon, H., Jeitler, M., Markytan, M., Mikulec, I., Neuhofer, G., Widhalm, L.
Publikováno v:
JHEP 03(2024)137
The NA48/2 experiment at CERN reports the first observation of the $K^{\pm} \rightarrow \pi^{0} \pi^{0} \mu^{\pm} \nu$ decay based on a sample of 2437 candidates with 15% background contamination collected in 2003--2004. The decay branching ratio in
Externí odkaz:
http://arxiv.org/abs/2310.20295
We show that computing the strongest polynomial invariant for single-path loops with polynomial assignments is at least as hard as the Skolem problem, a famous problem whose decidability has been open for almost a century. While the strongest polynom
Externí odkaz:
http://arxiv.org/abs/2307.10902
Many stochastic continuous-state dynamical systems can be modeled as probabilistic programs with nonlinear non-polynomial updates in non-nested loops. We present two methods, one approximate and one exact, to automatically compute, without sampling,
Externí odkaz:
http://arxiv.org/abs/2306.07072
Autor:
Amrollahi, Daneshvar, Bartocci, Ezio, Kenison, George, Kovács, Laura, Moosbrugger, Marcel, Stankovič, Miroslav
Automatically generating invariants, key to computer-aided analysis of probabilistic and deterministic programs and compiler optimisation, is a challenging open problem. Whilst the problem is in general undecidable, the goal is settled for restricted
Externí odkaz:
http://arxiv.org/abs/2306.01597
We present an exact approach to analyze and quantify the sensitivity of higher moments of probabilistic loops with symbolic parameters, polynomial arithmetic and potentially uncountable state spaces. Our approach integrates methods from symbolic comp
Externí odkaz:
http://arxiv.org/abs/2305.15259
Autor:
Amrollahi, Daneshvar, Bartocci, Ezio, Kenison, George, Kovács, Laura, Moosbrugger, Marcel, Stankovič, Miroslav
Automatically generating invariants, key to computer-aided analysis of probabilistic and deterministic programs and compiler optimisation, is a challenging open problem. Whilst the problem is in general undecidable, the goal is settled for restricted
Externí odkaz:
http://arxiv.org/abs/2206.06943
Autor:
Karimi, Ahmad, Moosbrugger, Marcel, Stankovič, Miroslav, Kovács, Laura, Bartocci, Ezio, Bura, Efstathia
We present an algorithmic approach to estimate the value distributions of random variables of probabilistic loops whose statistical moments are (partially) known. Based on these moments, we apply two statistical methods, Maximum Entropy and Gram-Char
Externí odkaz:
http://arxiv.org/abs/2205.07639
We present a method to automatically approximate moment-based invariants of probabilistic programs with non-polynomial updates of continuous state variables to accommodate more complex dynamics. Our approach leverages polynomial chaos expansion to ap
Externí odkaz:
http://arxiv.org/abs/2205.02577