Zobrazeno 1 - 10
of 103
pro vyhledávání: '"Moon, Gary"'
Autor:
Moon, Gary, Wu, Yilun
We construct global curves of rotational traveling wave solutions to the $2D$ water wave equations on a compact domain. The real analytic interface is subject to surface tension, while gravitational effects are ignored. In contrast to the rotational
Externí odkaz:
http://arxiv.org/abs/2407.16794
Autor:
Moon, Gary
We consider a toy model for a damped water waves system in a domain $\Omega_t \subset \mathbb{T} \times \mathbb{R}$. The toy model is based on the paradifferential water waves equation derived in the work of Alazard-Burq-Zuily. The form of damping we
Externí odkaz:
http://arxiv.org/abs/2203.16645
Autor:
Moon, Gary
We consider the gravity-capillary water waves problem in a domain $\Omega_t \subset \mathbb{T} \times \mathbb{R}$ with substantial geometric features. Namely, we consider a variable bottom, smooth obstacles in the flow and a constant background curre
Externí odkaz:
http://arxiv.org/abs/2201.04713
We explore regularity properties of solutions to a two-phase elliptic free boundary problem near a Neumann fixed boundary in two dimensions. Consider a function u, which is harmonic where it is not zero and satisfies a gradient jump condition weakly
Externí odkaz:
http://arxiv.org/abs/1708.09329
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Moon, Gary
The evolution of waves on the surface of a body of water (or another approximately inviscid liquid) is governed by the free-surface Euler equations; that is, the incompressible Euler equations coupled with a kinematic and a dynamic boundary condition
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::76c6b617f18969bd1553de8bbe9d1096