Zobrazeno 1 - 10
of 63
pro vyhledávání: '"Montiel, Sebastián"'
Autor:
Montiel, Sebastián
A compact approach to the positivity of Brown-York's mass and its relation with the Min-Oo conjecture, Yau's Problem \#100 and rigidity of hypersurfaces
Comment: In this paper, we fix some serious problem in the proofs of previous versions. Fort
Comment: In this paper, we fix some serious problem in the proofs of previous versions. Fort
Externí odkaz:
http://arxiv.org/abs/2409.17170
In this paper, we generalize a theorem {\`a} la Alexandrov of Wang, Wang and Zhang [WWZ] for closed codimension-two spacelike submanifolds in the Minkowski spacetime for an adapted CMC condition .
Externí odkaz:
http://arxiv.org/abs/1909.04900
Let (M, g) be an (n + 1)-dimensional asymptotically locally hyperbolic (ALH) manifold with a conformal compactification whose conformal infinity is ($\partial$M, [$\gamma$]). We will first observe that Ch(M, g) $\le$ n, where Ch(M, g) is the Cheeger
Externí odkaz:
http://arxiv.org/abs/1909.04902
Autor:
Hijazi, Oussama, Montiel, Sebastián
Publikováno v:
Asian Journal of Mathematics, International Press, 2014, 18, pp.489 - 506
Suppose that $\Sigma=\partial M$ is the $n$-dimensional boundary of a connected compact Riemannian spin manifold $( M,\langle\;,\;\rangle)$ with non-negative scalar curvature, and that the (inward) mean curvature $H$ of $\Sigma$ is positive. We show
Externí odkaz:
http://arxiv.org/abs/1502.04859
We prove that, among all (n + 1)-dimensional spin static vacua with positive cosmological constant, the de Sitter spacetime is characterized by the fact that its spatial Killing hori-zons have minimal modes for the Dirac operator. As a consequence, t
Externí odkaz:
http://arxiv.org/abs/1502.04090
Publikováno v:
Pacific Journal of Mathematics, 2014, 272, pp.177 - 199
Let $\Omega$ be a compact and mean-convex domain with smooth boundary $\Sigma:=\partial\Omega$, in an initial data set $(M^3,g,K)$, which has no apparent horizon in its interior. If $\Sigma$ is spacelike in a spacetime $(\E^4,g\_\E)$ with spacelike m
Externí odkaz:
http://arxiv.org/abs/1502.04087
Suppose that $\Sigma=\partial\Omega$ is the $n$-dimensional boundary, with positive (inward) mean curvature $H$, of a connected compact $(n+1)$-dimensional Riemannian spin manifold $(\Omega^{n+1},g)$ whose scalar curvature $R\ge -n(n+1)k^2$, for some
Externí odkaz:
http://arxiv.org/abs/1502.04091
Autor:
Hijazi, Oussama, Montiel, Sebastián
We prove that an $(n+1)$-dimensional spin static vacuum with negative cosmological constant whose null infinity has a boundary admitting a non-trivial Killing spinor field is the AdS spacetime. As a consequence, we generalize previous uniqueness resu
Externí odkaz:
http://arxiv.org/abs/1211.5651
Publikováno v:
In Comptes rendus - Mathématique March 2018 356(3):322-326