Zobrazeno 1 - 10
of 305
pro vyhledávání: '"Monthus, Cecile"'
Autor:
Monthus, Cecile
For the discrete-time or the continuous-time Markov spin models for image generation when each pixel $n=1,..,N$ can take only two values $S_n=\pm 1$, the finite-time forward propagator depends on the initial and final configurations only via their ov
Externí odkaz:
http://arxiv.org/abs/2410.20906
Autor:
Monthus, Cecile
In the field of Markov models for image generation, the main idea is to learn how non-trivial images are gradually destroyed by a trivial forward Markov dynamics over the large time window $[0,t]$ converging towards pure noise for $t \to + \infty$, a
Externí odkaz:
http://arxiv.org/abs/2410.10255
Autor:
Monthus, Cecile
The Pelikan random trajectories $x_t \in [0,1[$ are generated by choosing the chaotic doubling map $x_{t+1}=2 x_t [mod 1]$ with probability $p$ and the non-chaotic half-contracting map $x_{t+1}=\frac{x_t}{2}$ with probability $(1-p)$. We compute vari
Externí odkaz:
http://arxiv.org/abs/2409.19999
Autor:
Monthus, Cecile
Publikováno v:
J. Stat. Mech. (2024) 083207
Continuity equations associated to continuous-time Markov processes can be considered as Euclidean Schr\"odinger equations, where the non-hermitian quantum Hamiltonian $\bold{H}={\bold{div}}{\bold J}$ is naturally factorized into the product of the d
Externí odkaz:
http://arxiv.org/abs/2404.16605
Autor:
Monthus, Cecile
Publikováno v:
J. Stat. Mech. (2024) 073203
The large deviations at various levels that are explicit for Markov jump processes satisfying detailed-balance are revisited in terms of the supersymmetric quantum Hamiltonian $H$ that can be obtained from the Markov generator via a similarity transf
Externí odkaz:
http://arxiv.org/abs/2403.11525
Autor:
Monthus, Cecile
Publikováno v:
J. Stat. Mech. (2024) 013208
The large deviations properties of trajectory observables for chaotic non-invertible deterministic maps as studied recently by N. R. Smith, Phys. Rev. E 106, L042202 (2022) and by R. Gutierrez, A. Canella-Ortiz, C. Perez-Espigares, arXiv:2304.13754 a
Externí odkaz:
http://arxiv.org/abs/2311.00593
Autor:
Monthus, Cecile
Publikováno v:
J. Stat. Mech. (2024) 013205
For diffusion processes in dimension $d>1$, the statistics of trajectory observables over the time-window $[0,T]$ can be studied via the Feynman-Kac deformations of the Fokker-Planck generator, that can be interpreted as euclidean non-hermitian elect
Externí odkaz:
http://arxiv.org/abs/2309.15542
Autor:
Monthus, Cecile
Publikováno v:
J. Stat. Mech. (2024) 013206
In the field of large deviations for stochastic dynamics, the canonical conditioning of a given Markov process with respect to a given time-local trajectory observable over a large time-window has attracted a lot of interest recently. In the present
Externí odkaz:
http://arxiv.org/abs/2308.12638
Autor:
Monthus, Cecile
Publikováno v:
2024 J. Phys. A: Math. Theor. 57 095002
Behind the nice unification provided by the notion of the level 2.5 in the field of large deviations for time-averages over a long Markov trajectory, there are nevertheless very important qualitative differences between the meaning of the level 2.5 f
Externí odkaz:
http://arxiv.org/abs/2306.10932
Autor:
Monthus, Cecile
Publikováno v:
J. Stat. Mech. (2023) 063206
For boundary-driven non-equilibrium Markov models of non-interacting particles in one dimension, either in continuous space with the Fokker-Planck dynamics involving an arbitrary force $F(x)$ and an arbitrary diffusion coefficient $D(x)$, or in discr
Externí odkaz:
http://arxiv.org/abs/2304.09518