Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Monterde, Hermie"'
Autor:
Kim, Sooyeong, Monterde, Hermie, Ahmadi, Bahman, Chan, Ada, Kirkland, Stephen, Plosker, Sarah
An $s$-pair state in a graph is a quantum state of the form $\mathbf{e}_u+s\mathbf{e}_v$, where $u$ and $v$ are vertices in the graph and $s$ is a non-zero complex number. If $s=-1$ (resp., $s=1$), then such a state is called a pair state (resp. plus
Externí odkaz:
http://arxiv.org/abs/2404.16654
Autor:
Monterde, Hermie
A vertex in a graph is said to be sedentary if a quantum state assigned on that vertex tends to stay on that vertex. Under mild conditions, we show that the direct product and join operations preserve vertex sedentariness. We also completely characte
Externí odkaz:
http://arxiv.org/abs/2401.00362
Autor:
Kirkland, Steve, Monterde, Hermie
The join $X\vee Y$ of two graphs $X$ and $Y$ is the graph obtained by joining each vertex of $X$ to each vertex of $Y$. We explore the behaviour of a continuous quantum walk on a weighted join graph having the adjacency matrix or Laplacian matrix as
Externí odkaz:
http://arxiv.org/abs/2312.06906
A blow-up of $n$ copies of a graph $G$ is the graph $\overset{n}\uplus~G$ obtained by replacing every vertex of $G$ by an independent set of size $n$, where the copies of vertices in $G$ are adjacent in the blow-up if and only if the vertices adjacen
Externí odkaz:
http://arxiv.org/abs/2308.13887
Hadamard diagonalizable graphs are undirected graphs for which the corresponding Laplacian is diagonalizable by a Hadamard matrix. Such graphs have been studied in the context of quantum state transfer. Recently, the concept of a weak Hadamard matrix
Externí odkaz:
http://arxiv.org/abs/2307.01859
Autor:
Monterde, Hermie
Publikováno v:
Quantum Inf. Process. 22, 273 (2023)
We formalize the notion of a sedentary vertex and present a relaxation of the concept of a sedentary family of graphs introduced by Godsil [Linear Algebra Appl. 614:356-375, 2021]. We provide sufficient conditions for a given vertex in a graph to exh
Externí odkaz:
http://arxiv.org/abs/2303.06297
Autor:
Monterde, Hermie
Publikováno v:
Linear Algebra Appl. 676 (2023) 25-43
In this paper, we provide a characterization of fractional revival between twin vertices in a weighted graph with respect to its adjacency, Laplacian and signless Laplacian matrices. As an application, we characterize fractional revival between apexe
Externí odkaz:
http://arxiv.org/abs/2303.04952
Publikováno v:
J. Algebr. Comb. 58, 623-649 (2023)
Twin vertices in simple unweighted graphs are vertices that have the same neighbours and, in the case of weighted graphs with possible loops, the corresponding incident edges have equal weights. In this paper, we explore the role of twin vertices in
Externí odkaz:
http://arxiv.org/abs/2201.02720
Autor:
Monterde, Hermie
Publikováno v:
Electron. J. Linear Algebra 38, 494-518 (2021)
We explore algebraic and spectral properties of weighted graphs containing twin vertices that are useful in quantum state transfer. We extend the notion of adjacency strong cospectrality to arbitrary Hermitian matrices, with focus on the generalized
Externí odkaz:
http://arxiv.org/abs/2111.01265
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.