Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Montakarn Petapirak"'
Publikováno v:
Songklanakarin Journal of Science and Technology (SJST), Vol 44, Iss 5, Pp 1179-1184 (2022)
An element a in a ring R is said to be of (m, k)-type if a m = a k where m and k are positive integers with m > k ≥ 1. Let Xn(m, k) be the set of all (m, k)-type elements, X * n(m, k) be the set of all nonzero (m, k)-type elements, and Sn(m, k
Externí odkaz:
https://doaj.org/article/9c15297f72384706ae760db01c0eea9d
Publikováno v:
Journal of Mathematics, Vol 2021 (2021)
Let X be a nonempty set and ρ be an equivalence relation on X. For a nonempty subset S of X, we denote the semigroup of transformations restricted by an equivalence relation ρ fixing S pointwise by EFSX,ρ. In this paper, magnifying elements in EFS
Externí odkaz:
https://doaj.org/article/bece05cc9fc840b99592b7686f929cdb
Publikováno v:
International Journal of Analysis and Applications, Vol 20, Pp 29-29 (2022)
In this paper, we introduce the notions of spherical fuzzy ternary subsemigroups and spherical fuzzy ideals in ternary semigroups by using the concepts of ternary subsemigroups and ideals in ternary semigroups. We investigate their properties. Moreov
Externí odkaz:
https://doaj.org/article/63caf4d339294ca0867c35bb8ab2f4b5
Publikováno v:
Mathematics, Vol 8, Iss 4, p 473 (2020)
An element a of a semigroup S is called a left [right] magnifier if there exists a proper subset M of S such that a M = S ( M a = S ) . Let T ( X ) denote the semigroup of all transformations on a nonempty set X under the composition of functions, P
Externí odkaz:
https://doaj.org/article/b03a5bf4ca534ac98aa28ec9149e7b04
Publikováno v:
Mathematics, Vol 6, Iss 9, p 160 (2018)
Let S be a semigroup. An element a of S is called a right [left] magnifying element if there exists a proper subset M of S satisfying S = M a [ S = a M ] . Let E be an equivalence relation on a nonempty set X. In this paper, we consider the semigroup
Externí odkaz:
https://doaj.org/article/52e8928f12fb49d6a3e7fad6badfe634
Publikováno v:
ScienceAsia; Oct2023, Vol. 49 Issue 5, p678-684, 7p
Publikováno v:
Journal of Group Theory. 20:1073-1088
A group homomorphism e : H → G {e:H\to G} is a cellular cover of G if for every homomorphism φ : H → G {\varphi:H\to G} there is a unique homomorphism φ ¯ : H → H {\bar{\varphi}:H\to H} such that φ ¯ e = φ {\bar{\varphi}e=\varphi} . G
Publikováno v:
Mathematics; Volume 8; Issue 4; Pages: 473
Mathematics, Vol 8, Iss 473, p 473 (2020)
Mathematics, Vol 8, Iss 473, p 473 (2020)
An element a of a semigroup S is called a left [right] magnifier if there exists a proper subset M of S such that a M = S ( M a = S ) . Let T ( X ) denote the semigroup of all transformations on a nonempty set X under the composition of functions, P
Publikováno v:
Mathematics, Vol 6, Iss 9, p 160 (2018)
Mathematics
Volume 6
Issue 9
Mathematics
Volume 6
Issue 9
Let S be a semigroup. An element a of S is called a right [left] magnifying element if there exists a proper subset M of S satisfying S = M a [ S = a M ] . Let E be an equivalence relation on a nonempty set X. In this paper, we consider the semigroup