Zobrazeno 1 - 10
of 98
pro vyhledávání: '"Monneau, Regis"'
We prove that the entropy solution to a scalar conservation law posed on the real line with a flux that is discontinuous at one point (in the space variable) coincides with the derivative of the solution to a Hamilton-Jacobi (HJ) equation whose Hamil
Externí odkaz:
http://arxiv.org/abs/2407.04318
We consider traffic flows described by conservation laws. We study a 2:1 junction (with two incoming roads and one outgoing road) or a 1:2 junction (with one incoming road and two outgoing roads). At the mesoscopic level, the priority law at the junc
Externí odkaz:
http://arxiv.org/abs/2311.11709
The goal of this paper is to study the link between the solution to an Hamilton-Jacobi (HJ) equation and the solution to a Scalar Conservation Law (SCL) on a special network. When the equations are posed on the real axis, it is well known that the sp
Externí odkaz:
http://arxiv.org/abs/2311.07177
In this note, we consider an evolution coercive Hamilton-Jacobi equation posed in a domain and supplemented with a boundary condition. We are interested in proving a comparison principle in the case where the time and the (normal) gradient variables
Externí odkaz:
http://arxiv.org/abs/2310.13467
This work is concerned with Hamilton-Jacobi equations of evolution type posed in domains and supplemented with boundary conditions. Hamiltonians are coercive but are neither convex nor quasiconvex. We analyse boundary conditions when understood in th
Externí odkaz:
http://arxiv.org/abs/2309.08224
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper, we study degenerate parabolic system, which are strongly coupled. We prove general existence result, but the uniqueness remains an open question. Our proof of existence is based on a crucial entropy estimate which both control the grad
Externí odkaz:
http://arxiv.org/abs/1408.3925
In this paper, we present a surprising two-dimensional contraction family for porous medium and fast diffusion equations. This approach provides new a priori estimates on the solutions, even for the standard heat equation.
Externí odkaz:
http://arxiv.org/abs/1406.6588
Publikováno v:
Anal. PDE 8 (2015) 1891-1929
Given a coercive Hamiltonian which is quasi-convex with respect to the gradient variable and periodic with respect to time and space at least "far away from the origin", we consider the solution of the Cauchy problem of the corresponding Hamilton-Jac
Externí odkaz:
http://arxiv.org/abs/1406.5283