Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Monica Idà"'
Publikováno v:
Linhas Críticas, Vol 23, Iss 52 (2018)
La presente investigación tiene como objetivo comprender los discursos que subyacen en la producción-constitución de subjetividad de un grupo de estudiantes indígenas de la Universidad del Quindío. Son tenidos en cuenta autores como Foucault, pa
Externí odkaz:
https://doaj.org/article/0753c69045504fe28f1f76ca03df2ecb
Publikováno v:
Mathematics, Vol 11, Iss 10, p 2324 (2023)
The paper is an introduction to the use of the classical Newton–Puiseux procedure, oriented towards an algorithmic description of it. This procedure allows to obtain polynomial approximations for parameterizations of branches of an algebraic plane
Externí odkaz:
https://doaj.org/article/8f8aa673fe8e4e9abaeb10ff26c12943
Autor:
Alessandro Gimigliano, Monica Idà
Publikováno v:
Geometriae Dedicata. 217
We study the relation between the type of a double point of a plane curve and the curvilinear 0-dimensional subschemes of the curve at the point. An Algorithm related to a classical procedure for the study of double points via osculating curves is de
Publikováno v:
Scopus-Elsevier
Given an immersion $\phi: P^1 \to \P^2$, we give new approaches to determining the splitting of the pullback of the cotangent bundle. We also give new bounds on the splitting type for immersions which factor as $\phi: P^1 \cong D \subset X \to P^2$,
Publikováno v:
Journal of Pure and Applied Algebra. 213(2):203-214
We study the connection between the generation of a fat point scheme supported at general points in the plane and the behaviour of the cotangent bundle with respect to some rational curves particularly relevant for the scheme. We put forward two conj
Autor:
Monica Idà, Edoardo Ballico
Publikováno v:
Journal of Pure and Applied Algebra. 212:1756-1769
Let Z be a fat point scheme in supported on general points. Here we prove that if the multiplicities are at most 3 and the length of Z is sufficiently high then the number of generators of the homogeneous ideal IZ in each degree is as small as numeri
We consider the parameterization ${\mathbf{f}}=(f_0,f_1,f_2)$ of a plane rational curve $C$ of degree $n$, and we want to study the singularities of $C$ via such parameterization. We do this by using the projection from the rational normal curve $C_n
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4ae551cd1468e94d33133617e192cab9
Publikováno v:
Scopus-Elsevier
We consider the k-osculating varieties Ok,n.d to the (Veronese) d-uple embeddings of ℙn. We study the dimension of their higher secant varieties via inverse systems (apolarity). By associating certain 0-dimensional schemes Y ⊂ ℙn to and by stud
Autor:
Monica Idà, Alessandro Gimigliano
Publikováno v:
Journal of Pure and Applied Algebra. 187:99-128
In this paper we prove that the union Y of the second in3nitesimal neighbourhoods of n generic points in P 2 is minimally generated for n � ; 3; 5, i.e., the mapsk :H 0 (IY (k))⊗H 0 (OP2 (1)) → H 0 (IY (k + 1)) are of maximal rank. This, togeth
Autor:
Monica Idà
Publikováno v:
Journal of Algebra. 216(2):741-753