Zobrazeno 1 - 10
of 101
pro vyhledávání: '"Mondal, Saiful R"'
Autor:
Mondal, Saiful R.1 (AUTHOR) smondal@kfu.edu.sa
Publikováno v:
Mathematics (2227-7390). Sep2024, Vol. 12 Issue 18, p2869. 20p.
Autor:
Mondal, Saiful R.1 (AUTHOR) smondal@kfu.edu.sa, Giri, Manas Kumar2 (AUTHOR) mgiri3029@gmail.com, Kondooru, Raghavendar2 (AUTHOR) raghavendar248@gmail.com
Publikováno v:
Symmetry (20738994). Jun2024, Vol. 16 Issue 6, p662. 16p.
Autor:
Alzahrani, Reem1 (AUTHOR), Mondal, Saiful R.1 (AUTHOR) smondal@kfu.edu.sa
Publikováno v:
Symmetry (20738994). Jan2024, Vol. 16 Issue 1, p19. 21p.
Autor:
Mondal, Saiful R.1 (AUTHOR) smondal@kfu.edu.sa
Publikováno v:
Mathematics (2227-7390). Jan2024, Vol. 12 Issue 1, p39. 17p.
For a fixed $a \in \{1, 2, 3, \ldots\},$ the radius of starlikeness of positive order is obtained for each of the normalized analytic functions \begin{align*} \mathtt{f}_{a, \nu}(z)&:= \bigg(2^{a \nu-a+1} a^{-\frac{a(a\nu-a+1)}{2}} \Gamma(a \nu+1) {}
Externí odkaz:
http://arxiv.org/abs/1707.00379
Autor:
Mondal, Saiful R
This article studies the monotonicity, log-convexity of the modified Lommel functions by using its power series and infinite product representation. Same properties for the ratio of the modified Lommel functions with the Lommel function, $\sinh$ and
Externí odkaz:
http://arxiv.org/abs/1704.04667
The article considers the generalized k-Bessel functions and represents it as Wright functions. Then we study the monotonicity properties of the ratio of two different orders k- Bessel functions, and the ratio of the k-Bessel and the m-Bessel functio
Externí odkaz:
http://arxiv.org/abs/1702.05524
Autor:
Nisar, Kottakkaran S, Mondal, Saiful R
A new generalization called $\mathtt{k}$-Struve function and its properties given by Nisar and saiful very recently. In this paper, we establish the pathway fractional integral representation of $\mathtt{k}$-Struve function. Many special cases also e
Externí odkaz:
http://arxiv.org/abs/1611.09157
Autor:
Mondal, Saiful R
This paper studies the log-convexity of the extended beta functions. As a consequence, Tur\'an-type inequalities are established.The monotonicity, log-convexity, log-concavity of extended hypergeometric functions are deduced by using the inequalities
Externí odkaz:
http://arxiv.org/abs/1611.08423
Autor:
Mondal, Saiful R
This paper introduces and studies a generalization of the $\mathtt{k}$-Bessel function of order $\nu$ given by \[\mathtt{W}^{\mathtt{k}}_{\nu, c}(x):= \sum_{r=0}^\infty \frac{(-c)^r}{\Gamma_{\mathtt{k}}\left( r \mathtt{k} +\nu+\mathtt{k}\right) r!} \
Externí odkaz:
http://arxiv.org/abs/1611.07499