Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Monclair, Daniel"'
By constructing a non-empty domain of discontinuity in a suitable homogeneous space, we prove that every torsion-free projective Anosov subgroup is the monodromy group of a locally homogeneous contact Axiom A dynamical system with a unique basic hype
Externí odkaz:
http://arxiv.org/abs/2403.14257
We consider hyperbolic and anti-de Sitter (AdS) structures on $M\times (0,1)$, where $M$ is a $d$-dimensional Gromov-Thurston manifold. If $M$ has cone angles greater than $2\pi$, we show that there exists a "quasifuchsian" (globally hyperbolic maxim
Externí odkaz:
http://arxiv.org/abs/2310.12003
Autor:
Monclair, Daniel
We study the geometry of a weak Riemannian metric on the infinite dimensional manifold of compact spacelike Cauchy hypersurfaces in a globally hyperbolic spacetime. We show that the geodesic distance (i.e. the infimum of lengths of paths between two
Externí odkaz:
http://arxiv.org/abs/2310.08469
Publikováno v:
Journal de l'Ecole Polytechnique - Math\'ematiques, Tome 10 (2023), p. 1157-1193
We study the relation between critical exponents and Hausdorff dimensions of limit sets for projective Anosov representations. We prove that the Hausdorff dimension of the symmetric limit set in $\mathbf{P}(\mathbb{R}^{n}) \times \mathbf{P}({\mathbb{
Externí odkaz:
http://arxiv.org/abs/1902.01844
Autor:
Glorieux, Olivier, Monclair, Daniel
Limit sets of $\mathrm{AdS}$-quasi-Fuchsian groups of $\mathrm{PO}(n,2)$ are always Lipschitz submanifolds. The aim of this article is to show that they are never $\mathcal{C}^1$, except for the case of Fuchsian groups. As a byproduct we show that $\
Externí odkaz:
http://arxiv.org/abs/1809.10639
Autor:
Monclair, Daniel
Cette thèse comporte deux parties, axées sur des aspects différents de la géométrie lorentzienne. La première partie porte sur les groupes d’isométries de surfaces lorentziennes globalement hyperboliques spatialement compactes, particulière
Externí odkaz:
http://www.theses.fr/2014ENSL0911/document
Autor:
Glorieux, Olivier, Monclair, Daniel
The aim of this article is to understand the geometry of limit sets in pseudo-Riemannian hyperbolic geometry. We focus on a class of subgroups of $\mathrm{PO}(p,q+1)$ introduced by Danciger, Gu\'eritaud and Kassel, called $\mathbb{H}^{p,q}$-convex co
Externí odkaz:
http://arxiv.org/abs/1606.05512
Autor:
Monclair, Daniel
We develop a new approach to the existence of time functions on Lorentzian manifolds, based on Conley's work regarding Lyapunov functions for dynamical systems. We recover Hawking's result that a stably causal admits a time function through a more ge
Externí odkaz:
http://arxiv.org/abs/1603.06994
Autor:
Monclair, Daniel
We study a simple problem that arises from the study of Lorentz surfaces and Anosov flows. For a non decreasing map of degree one $h:\mathbb{S}^1\to \mathbb{S}^1$, we are interested in groups of circle diffeomorphisms that act on the complement of th
Externí odkaz:
http://arxiv.org/abs/1404.2829
Autor:
Monclair, Daniel
We study the isometry group of a globally hyperbolic spatially compact Lorentz surface. Such a group acts on the circle, and we show that when the isometry group acts non properly, the subgroups of $\mathrm{Diff}(\mathbb{S}^1)$ obtained are semi conj
Externí odkaz:
http://arxiv.org/abs/1402.7179