Zobrazeno 1 - 10
of 1 156
pro vyhledávání: '"Monaghan J"'
Publikováno v:
In Coastal Engineering October 2019 152
Autor:
Kajtar, J. B., Monaghan, J. J.
In this paper we study the two dimensional motion of three linked rigid bodies moving through a fluid. The bodies change their orientation relative to each other in a way which mimics the swimming of fish. In contrast to previous simulations the bodi
Externí odkaz:
http://arxiv.org/abs/0912.4577
Autor:
Monaghan, J. J.
The aim of this paper is to devise a turbulence model for the particle method Smoothed Particle Hydrodynamics (SPH) which makes few assumptions, conserves linear and angular momentum, satisfies a discrete version of Kelvin's circulation theorem, and
Externí odkaz:
http://arxiv.org/abs/0911.2523
Autor:
Kajtar, J. B., Monaghan, J. J.
In this paper we study the motion of three linked ellipses moving through a viscous fluid in two dimensions. The angles between the ellipses change with time in a specified manner (the gait) and the resulting time varying configuration is similar to
Externí odkaz:
http://arxiv.org/abs/0911.2050
Publikováno v:
Discrete Math. 310, 2037-2053 (2010)
In this survey, we give a friendly introduction from a graph theory perspective to the q-state Potts model, an important statistical mechanics tool for analyzing complex systems in which nearest neighbor interactions determine the aggregate behavior
Externí odkaz:
http://arxiv.org/abs/0804.2468
Autor:
Price, D. J., Monaghan, J. J.
Publikováno v:
Mon.Not.Roy.Astron.Soc.374:1347-1358,2007
In this paper we describe an adaptive softening length formalism for collisionless N-body and self-gravitating Smoothed Particle Hydrodynamics (SPH) calculations which conserves momentum and energy exactly. This means that spatially variable softenin
Externí odkaz:
http://arxiv.org/abs/astro-ph/0610872
Autor:
Monaghan, J. J., Price, D. J.
Publikováno v:
Mon.Not.Roy.Astron.Soc.365:991-1006,2006
Toy Stars are gas masses where the compressibility is treated without approximations but gravity is replaced by a force which, for any pair of masses, is along their line of centres and proportional to their separation. They provide an invaluable res
Externí odkaz:
http://arxiv.org/abs/astro-ph/0510713
Autor:
Price, D. J., Monaghan, J. J.
Publikováno v:
Mon.Not.Roy.Astron.Soc.364:384-406,2005
In two previous papers (Price & Monaghan 2004a,b) (papers I,II) we have described an algorithm for solving the equations of Magnetohydrodynamics (MHD) using the Smoothed Particle Hydrodynamics (SPH) method. The algorithm uses dissipative terms in ord
Externí odkaz:
http://arxiv.org/abs/astro-ph/0509083
Autor:
Price, D. J., Monaghan, J. J.
Publikováno v:
Mon.Not.Roy.Astron.Soc. 348 (2004) 139
In this paper we show how a Lagrangian variational principle can be used to derive the SPMHD (smoothed particle magnetohydrodynamics) equations for ideal MHD. We also consider the effect of a variable smoothing length in the SPH kernels after which w
Externí odkaz:
http://arxiv.org/abs/astro-ph/0310790
Autor:
Price, D. J., Monaghan, J. J.
Publikováno v:
Mon.Not.Roy.Astron.Soc. 348 (2004) 123
In this paper we show how the Smoothed Particle Hydrodynamics (SPH) equations for ideal magnetohydrodynamics (MHD) can be written in conservation form with the positivity of the dissipation guaranteed. We call the resulting algorithm Smoothed Particl
Externí odkaz:
http://arxiv.org/abs/astro-ph/0310789