Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Molnar, Jan"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kappeler, Thomas, Molnar, Jan
Publikováno v:
Sel. Math. New Ser., online, (2017)
In this paper we prove a wellposedness result of the KdV equation on the space of periodic pseudo-measures, also referred to as the Fourier Lebesgue space $\mathscr{F}\ell^{\infty}(\mathbb{T},\mathbb{R})$, where $\mathscr{F}\ell^{\infty}(\mathbb{T},\
Externí odkaz:
http://arxiv.org/abs/1610.00278
Publikováno v:
SIAM J. Math. Anal., 49(3), 2191-2219, (2017)
We prove that the renormalized defocusing mKdV equation on the circle is locally in time $C^{0}$-wellposed on the Fourier Lebesgue space ${\mathcal{F}\ell}^p$ for any $2 < p < \infty$. The result implies that the defocusing mKdV equation itself is il
Externí odkaz:
http://arxiv.org/abs/1606.07052
Publikováno v:
Ann. Inst. Henri Poincar\'e, 35(1), 101-160, (2018)
In form of a case study for the KdV and the KdV2 equations, we present a novel approach of representing the frequencies of integrable PDEs which allows to extend them analytically to spaces of low regularity and to study their asymptotics. Applicatio
Externí odkaz:
http://arxiv.org/abs/1605.06690
Autor:
Molnar, Jan-Cornelius, Widmer, Yannick
The purpose of this paper is to express the entire hierarchy of mKdV vector fields as restrictions of vector fields in the NLS hierarchy. The result is proved using the normal form theory of the two equations.
Comment: 20 pages
Comment: 20 pages
Externí odkaz:
http://arxiv.org/abs/1601.07580
Publikováno v:
Communications in Mathematical Physics, 346(1): 191-236, 2016
We prove that the nonlinear part $H^{*}$ of the KdV Hamiltonian $H^{kdv}$, when expressed in action variables $I = (I_{n})_{n\ge 1}$, extends to a real analytic function on the positive quadrant $\ell^2_+(\mathbb N)$ of $\ell^{2}(\mathbb N)$ and is s
Externí odkaz:
http://arxiv.org/abs/1502.05857
Autor:
Molnar, Jan-Cornelius
Publikováno v:
Discrete Contin. Dyn. Syst., 36(6), 3339-3356, (2016)
The KdV-equation $u_t = -u_{xxx} + 6uu_x$ on the circle admits a global nonlinear Fourier transform, also known as Birkhoff map, linearizing the KdV flow. The regularity properties of $u$ are known to be closely related to the decay properties of the
Externí odkaz:
http://arxiv.org/abs/1502.04550
Autor:
Molnar, Jan-Cornelius
Publikováno v:
Int. Math. Res. Not. 2015(17), 8309-8352, (2015)
The defocusing NLS-equation $\mathrm{i} u_t = -u_{xx} + 2|u|^2u$ on the circle admits a global nonlinear Fourier transform, also known as Birkhoff map, linearising the NLS-flow. The regularity properties of $u$ are known to be closely related to the
Externí odkaz:
http://arxiv.org/abs/1403.1369
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.