Zobrazeno 1 - 10
of 1 764
pro vyhledávání: '"Molnár, E"'
In our Novi Sad conference paper (1999) we described Dehn type surgeries of the famous Gieseking (1912) hyperbolic ideal simplex manifold $\mathcal{S}$, leading to compact fundamental domain $\mathcal{S}(k)$, $k = 2, 3, \dots$ with singularity geodes
Externí odkaz:
http://arxiv.org/abs/2004.12149
We study anisotropic fluid dynamics derived from the Boltzmann equation based on a particular choice for the anisotropic distribution function within a boost-invariant expansion of the fluid in one spatial dimension. In order to close the conservatio
Externí odkaz:
http://arxiv.org/abs/1705.01851
Publikováno v:
Phys. Rev. D 93, 114025 (2016)
Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame
Externí odkaz:
http://arxiv.org/abs/1602.00573
We consider the optimal approximation of certain quantum states of a harmonic oscillator with the superposition of a finite number of coherent states in phase space placed either on an ellipse or on a certain lattice. These scenarios are currently ex
Externí odkaz:
http://arxiv.org/abs/1411.6781
Publikováno v:
Clinical Ophthalmology, Vol Volume 14, Pp 1749-1757 (2020)
Zoltán Sohajda,1 Noémi Széll,1 Ágnes Revák,1 Júlia Papp,1 Edit Tóth-Molnár2 1University of Debrecen, Kenézy Hospital Department of Ophthalmology, Debrecen, Hungary; 2University of Szeged, Department of Ophthalmology, Szent-Györgyi Medical a
Externí odkaz:
https://doaj.org/article/85a60c8fc86944f181c2dd257dede773
Publikováno v:
Phys. Rev. D 89, 074010 (2014)
In Denicol et al., Phys. Rev. D 85, 114047 (2012), the equations of motion of relativistic dissipative fluid dynamics were derived from the relativistic Boltzmann equation. These equations contain a multitude of terms of second order in Knudsen numbe
Externí odkaz:
http://arxiv.org/abs/1308.0785
Israel-Stewart theory is a causal, stable formulation of relativistic dissipative fluid dynamics. This theory has been shown to give a decent description of the dynamical behavior of a relativistic fluid in cases where shear stress becomes important.
Externí odkaz:
http://arxiv.org/abs/1207.6811
Publikováno v:
Eur. Phys. J. A, 48 11 (2012) 170
We review the traditional derivation of the fluid-dynamical equations from kinetic theory according to Israel and Stewart. We show that their procedure to close the fluid-dynamical equations of motion is not unique. Their approach contains two approx
Externí odkaz:
http://arxiv.org/abs/1206.1554
Autor:
Biró, T. S., Molnár, E.
Publikováno v:
Eur. Phys. J. A, 48 11 (2012) 172
Experimental particle spectra can be successfully described by power-law tailed energy distributions characteristic to canonical equilibrium distributions associated to R\'enyi's or Tsallis' entropy formula - over a wide range of energies, colliding
Externí odkaz:
http://arxiv.org/abs/1205.6079
We study the influence of a temperature-dependent shear viscosity over entropy density ratio $\eta/s$, different shear relaxation times $\tau_\pi$, as well as different initial conditions on the transverse momentum spectra of charged hadrons and iden
Externí odkaz:
http://arxiv.org/abs/1203.2452