Zobrazeno 1 - 10
of 85
pro vyhledávání: '"Molina, Nancy"'
We investigate the relationship between the valuations of a germ of a singular foliation $\mathcal{F}$ on the complex plane and those of a balanced equation of separatrices for $\mathcal{F}$, extending a theorem by Mattei-Salem. Under certain conditi
Externí odkaz:
http://arxiv.org/abs/2408.10767
Let $\mathcal{F}$ be a holomorphic foliation at $p\in\mathbb{C}^2$, and $B$ be a separatrix of $\mathcal{F}$. We prove the following Dimca-Greuel type inequality $3\mu_p(\mathcal{F},B)-4\tau_p(\mathcal{F},B)+GSV_p(\mathcal{F},B)\leq 0$, where $\mu_p(
Externí odkaz:
http://arxiv.org/abs/2403.18654
We generalize Mattei's result relative to the Brian\c{c}on-Skoda theorem for foliations to the family of foliations of the second type. We use this generalization to establish relationships between the Milnor and Tjurina numbers of foliations of seco
Externí odkaz:
http://arxiv.org/abs/2207.11197
We study the relationship between the Milnor and Tjurina numbers of a singular foliation $\mathcal{F}$, in the complex plane, with respect to a balanced divisor of separatrices $\mathcal{B}$ for $\mathcal{F}$. For that, we associated with $\mathcal{F
Externí odkaz:
http://arxiv.org/abs/2112.14519
Autor:
Gurlekian, Jorge A. *, Suligoy, Stefania, Univaso, Pedro, Torres, Humberto, Masessa, Evangelina, Molina, Nancy
Publikováno v:
In Journal of Voice July 2024 38(4):816-825
Publikováno v:
In Expositiones Mathematicae December 2023 41(4)
Publikováno v:
In Neurología Argentina July-September 2023 15(3):191-197
Publikováno v:
An. St. Univ. Ovidius Constanta, Ser. Mat. 30 (2), 2022, 103-123
In this article we characterize the foliations that have the same Newton polygon that their union of formal separatrices, they are the foliations called of the second type. In the case of cuspidal foliations studied by Loray, we precise this characte
Externí odkaz:
http://arxiv.org/abs/1812.06530
Publikováno v:
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 30, Iss 2, Pp 103-123 (2022)
In this article we characterize the foliations that have the same Newton polygon that their union of formal separatrices, they are the foliations called of the second type. In the case of cuspidal foliations studied by Loray [Lo], we precise this cha
Externí odkaz:
https://doaj.org/article/837c83b98dc64c6da1a1dd905c094b5d
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.