Zobrazeno 1 - 10
of 86
pro vyhledávání: '"Molina, Constanza"'
We prove a connection between the Green's function of the fractional Anderson model and the two point function of a self-avoiding random walk with long range jumps, adapting a strategy proposed by Schenker in 2015. This connection allows us to exploi
Externí odkaz:
http://arxiv.org/abs/2306.02860
We study the Integrated Density of States (IDS) of the random Schr\"odinger operator appearing in the study of certain reinforced random processes in connection with a supersymmetric sigma-model. We rely on previous results on the supersymmetric sigm
Externí odkaz:
http://arxiv.org/abs/2211.10268
We study the Integrated Density of States of one-dimensional random operators acting on $\ell^2(\mathbb Z)$ of the form $T + V_\omega$ where $T$ is a Laurent (also called bi-infinite Toeplitz) matrix and $V_\omega$ is an Anderson potential generated
Externí odkaz:
http://arxiv.org/abs/2108.03663
Autor:
Müller, Peter, Rojas-Molina, Constanza
Delone operators are Schr\"odinger operators in multi-dimensional Euclidean space with a potential given by the sum of all translates of a given "single-site potential" centred at the points of a Delone set. In this paper, we use randomisation to stu
Externí odkaz:
http://arxiv.org/abs/2003.06325
Autor:
Rojas-Molina, Constanza
In this note we review some results on localization and related properties for random Schr\"odinger operators arising in aperiodic media. These include the Anderson model associated to disordered quasycrystals and also the so-called Delone operators,
Externí odkaz:
http://arxiv.org/abs/2002.01725
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Hernández, Héctor, Molina, Constanza
Publikováno v:
In Energy for Sustainable Development December 2023 77
We consider the $d$-dimensional fractional Anderson model $(-\Delta)^\alpha+ V_\omega$ on $\ell^2(\mathbb Z^d)$ where $0<\alpha\leq 1$. Here $-\Delta$ is the negative discrete Laplacian and $V_\omega$ is the random Anderson potential consisting of ii
Externí odkaz:
http://arxiv.org/abs/1910.02077
Autor:
Rojas-Molina, Constanza
The Anderson model serves to study the absence of wave propagation in a medium in the presence of impurities, and is one of the most studied examples in the theory of quantum disordered systems. In these notes we give a review of the spectral and dyn
Externí odkaz:
http://arxiv.org/abs/1710.02293
We extend to the two-particle Anderson model the characterization of the metal-insulator transport transition obtained in the one-particle setting by Germinet and Klein. We show that, for any fixed number of particles, the slow spreading of wave pack
Externí odkaz:
http://arxiv.org/abs/1604.03312