Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Mokhtar KI"'
Publikováno v:
Bulletin of Mathematical Sciences, Vol 13, Iss 03 (2023)
In this paper, we consider a degenerate hyperbolic inequality in an exterior domain under three types of boundary conditions: Dirichlet-type, Neumann-type, and Robin-type boundary conditions. Using a unified approach, we show that all the considered
Externí odkaz:
https://doaj.org/article/ed2ef4cd924f4fe99bb5532200509f3c
Publikováno v:
Bulletin of Mathematical Sciences, Vol 13, Iss 02 (2023)
Some results on nonexistence of nontrivial solutions to some time and space fractional differential evolution equations with transformed space argument are obtained via the nonlinear capacity method. The analysis is then used for a [Formula: see text
Externí odkaz:
https://doaj.org/article/8f2cc29f803740d49da0bb0eb735738b
Publikováno v:
Electronic Journal of Differential Equations, Vol 2020, Iss 110,, Pp 1-28 (2020)
We study the Cauchy problem for a system of semi-linear coupled fractional-diffusion equations with polynomial nonlinearities posed in $\mathbb{R}_{+}\times \mathbb{R}^N$. Under appropriate conditions on the exponents and the orders of the fractio
Externí odkaz:
https://doaj.org/article/591b795de3ae45dfb0e6705aa4eb588b
Publikováno v:
Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-10 (2020)
Abstract We prove the nonexistence of solutions of the fractional diffusion equation with time-space nonlocal source u t + ( − Δ ) β 2 u = ( 1 + | x | ) γ ∫ 0 t ( t − s ) α − 1 | u | p ∥ ν 1 q ( x ) u ∥ q r d s $$\begin{aligned} u_{t
Externí odkaz:
https://doaj.org/article/3438801b2df641a092ffae9e3e04a270
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2020, Iss 11, Pp 1-11 (2020)
Global existence, positivity, uniform boundedness and extinction results of solutions to a system of reaction-diffusion equations on unbounded domain modeling two species on a predator–prey relationship is considered.
Externí odkaz:
https://doaj.org/article/15dc5c4dc6c1465881d19b330d532c19
Publikováno v:
Electronic Journal of Differential Equations, Vol 2020, Iss 02,, Pp 1-10 (2020)
We consider the higher order diffusion Schrodinger equation with a time nonlocal nonlinearity $$ i\partial_tu-(-\Delta_{\mathbb{H}})^mu =\frac{\lambda}{\Gamma(\alpha)}\int_0^t(t-s)^{\alpha-1} | u(s)|^{p}\,ds, $$ posed in $(\eta, t) \in \mathbb{
Externí odkaz:
https://doaj.org/article/6740bdce9844497aadcdb2b7637f6eeb
Autor:
Mokhtar Kirane, Abdissalam A. Sarsenbi
Publikováno v:
Fractal and Fractional, Vol 7, Iss 2, p 131 (2023)
In the present work, two-dimensional mixed problems with the Caputo fractional order differential operator are studied using the Fourier method of separation of variables. The equation contains a linear transformation of involution in the second deri
Externí odkaz:
https://doaj.org/article/a2b6d69d34ab49a386bcb92c6f13271a
Publikováno v:
Mathematics, Vol 10, Iss 15, p 2586 (2022)
We consider the inverse problem of finding the solution of a generalized time-space fractional equation and the source term knowing the spatial mean of the solution at any times t∈(0,T], as well as the initial and the boundary conditions. The exist
Externí odkaz:
https://doaj.org/article/8253b06883f349e5974e6d271c1f6cff
Publikováno v:
Bulletin of Mathematical Sciences, Vol 10, Iss 1, Pp 2050007-1-2050007-20 (2020)
This paper is concerned with a fractional p-Laplacian system with both concave–convex nonlinearities. The existence and multiplicity results of positive solutions are obtained by variational methods and the Nehari manifold.
Externí odkaz:
https://doaj.org/article/7dfbb861e0384ca7ac244b829a3506f1
Publikováno v:
Journal of Function Spaces, Vol 2020 (2020)
We consider the system of nonlinear wave equations with nonlinear time fractional damping utt+−Δmu+CD0,tαtσuq=vp,t>0,x∈ℝN,vtt+−Δmv+CD0,tβtδvr=vs,t>0,x∈ℝN,u0,x,ut0,x=u0x,u1x,x∈ℝN,u0,x,ut0,x=u0x,u1x,x∈ℝN,where u,v=ut,x,vt,x, m
Externí odkaz:
https://doaj.org/article/823e21de1e324bcb92f9f228668cfd95