Zobrazeno 1 - 10
of 45
pro vyhledávání: '"Mokeev, A. S."'
Entangled qubits transported through space is a key element in many prospective quantum information systems, from long-distance quantum communication to large modular quantum processors. The moving qubits are decohered by time- and space-dependent no
Externí odkaz:
http://arxiv.org/abs/2409.04404
Publikováno v:
Lobachevskii J. Math., 42:10 (2021), 2280-2284
We consider error correction, based on the theory of non-commutative graphs, for a model of a qubit interacting with quantum oscillator. The dynamics of the composite system is governed by the Schr\"odinger equation which generates positive operator-
Externí odkaz:
http://arxiv.org/abs/2403.06733
Publikováno v:
Phys. Rev. A, 103:4, 042407 (2021)
Quantum error correction plays a key role for quantum information transmission and quantum computing. In this work, we develop and apply the theory of non-commutative operator graphs to study error correction in the case of a finite-dimensional quant
Externí odkaz:
http://arxiv.org/abs/2104.11937
Autor:
Amosov, G. G., Mokeev, A. S.
Publikováno v:
Lobachevskii J. Math. 41:12 (2020) 2310--2315
Given a quantum channel it is possible to define the non-commutative operator graph whose properties determine a possibility of error-free transmission of information via this channel. The corresponding graph has a straight definition through Kraus o
Externí odkaz:
http://arxiv.org/abs/2008.00290
Autor:
Amosov, G. G., Mokeev, A. S.
In the present paper we continue our study of non-commutative operator graphs in infinite-dimensional spaces. We consider examples of the non-commutative operator graphs generated by resolutions of identity corresponding to the Heisenberg-Weyl group
Externí odkaz:
http://arxiv.org/abs/1912.12099
Publikováno v:
Quantum Inf. Process., 19:3 (2020), 95 , 12 pp
An important topic in quantum information is the theory of error correction codes. Practical situations often involve quantum systems with states in an infinite dimensional Hilbert space, for example coherent states. Motivated by these practical need
Externí odkaz:
http://arxiv.org/abs/1910.08935
Autor:
Amosov, G. G., Mokeev, A. S.
Publikováno v:
Lobachevskii J. Math. 40:10 (2019) 1440--1443
We continue the study of non-commutative operator graphs generated by resolutions of identity covariant with respect to unitary actions of the circle group and the Heisenber-Weyl group as well. It is shown that the graphs generated by the circle grou
Externí odkaz:
http://arxiv.org/abs/1906.10092
Autor:
Amosov, G. G., Mokeev, A. S.
Publikováno v:
Internat. J. Theoret. Phys. 60 (2021) 457--463
We consider a reducible unitary representation of Heisenberg-Weyl group in a tensor product of two Hilbert spaces. A non-commutative operator graph generated by this representation is introduced. It is shown that spectral projections of unitaries in
Externí odkaz:
http://arxiv.org/abs/1812.02515
Autor:
Amosov, G. G., Mokeev, A. S.
Publikováno v:
Quantum Inf. Process. (2018) 17:325
We study non-commutative operator graphs generated by resolutions of identity covariant with respect to unitary representations of a compact group. Our main goal is searching for orthogonal projections which are anticliques (error-correcting codes) f
Externí odkaz:
http://arxiv.org/abs/1809.08586
Autor:
Amosov, G. G., Mokeev, A. S.
Publikováno v:
J. Math. Sci. 234 (2018) 269 - 275
In this paper anticliques for non-commutative operator graphs generated by the generalized Pauli matrices are constructed. It is shown that application of entangled states for the construction of code space K allows one to substantially increase the
Externí odkaz:
http://arxiv.org/abs/1709.08062