Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Mohsenipour, Shahram"'
Autor:
Mohsenipour, Shahram
We prove an infinitary version of the Brauer-Schur theorem.
Comment: Some editorial minor changes
Comment: Some editorial minor changes
Externí odkaz:
http://arxiv.org/abs/2305.08403
Autor:
MOHSENIPOUR, SHAHRAM1 mohseni@ipm.ir
Publikováno v:
Transactions on Combinatorics. 2024, Vol. 13 Issue 4, p319-325. 7p.
Autor:
Mohsenipour, Shahram
We give a purely combinatorial proof for the infinitary van der Waerden's theorem.
Externí odkaz:
http://arxiv.org/abs/2106.14383
Autor:
Mohsenipour, Shahram
Coste and Roy in 1979 defined a structural sheaf on the real Zariski spectrum of a semi-real ring $A$ and asked whether the ring of the global sections is $\sum^{-1}_1 A$ where $\sum_1$ is the multiplicative subset $\{1+\sum_{i=1}^n a_i^2|a_i\in A, n
Externí odkaz:
http://arxiv.org/abs/1903.06975
Autor:
Mohsenipour, Shahram
We give a purely combinatorial proof for a two-fold generalization of van der Waerden-Brauer's theorem and Hindman's theorem. We also give tower bounds for a finite version of it.
Comment: Revised and updated
Comment: Revised and updated
Externí odkaz:
http://arxiv.org/abs/1902.09916
Autor:
Mohsenipour, Shahram
We study discrete orderings in the real spectrum of a commutative ring by defining discrete prime cones and give an algebro-geometric meaning to some kind of diophantine problems over discretely ordered rings. Also for a discretely ordered ring $M$ a
Externí odkaz:
http://arxiv.org/abs/1807.00501
Autor:
Mohsenipour, Shahram, Shelah, Saharon
Spencer asked whether the Paris-Harrington version of the Folkman-Sanders theorem has primitive recursive upper bounds. We give a positive answer to this question.
Externí odkaz:
http://arxiv.org/abs/1806.04917
Assuming the existence of a Mahlo cardinal, we produce a generic extension of G\"{o}del's constructible universe $L$, in which the transfer principles $(\aleph_2, \aleph_0) \to (\aleph_3, \aleph_1)$ and $(\aleph_3, \aleph_1) \to (\aleph_2, \aleph_0)$
Externí odkaz:
http://arxiv.org/abs/1701.00653
Autor:
Mohsenipour, Shahram, Shelah, Saharon
Publikováno v:
Notre Dame J. Formal Logic 59, no. 3 (2018), 405-416
In this paper we study set mappings on 4-tuples. We continue a previous work of Komjath and Shelah by getting new finite bounds on the size of free sets in a generic extension. This is obtained by an entirely different forcing construction. Moreover
Externí odkaz:
http://arxiv.org/abs/1510.02216
Autor:
Mohsenipour, Shahram
Publikováno v:
In Journal of Algebra 15 October 2020 560:1-16