Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Mohsen Pourvali"'
Publikováno v:
International Journal of Interactive Multimedia and Artificial Intelligence, Vol 5, Iss 4, Pp 28-34 (2019)
Topic modeling algorithms are statistical methods that aim to discover the topics running through the text documents. Using topic models in machine learning and text mining is popular due to its applicability in inferring the latent topic structure o
Externí odkaz:
https://doaj.org/article/ea735aa30d764f7f85d832fff735c8a3
Autor:
Yong Rui, Vicente Ivan Sanchez Carmona, Mohsen Pourvali, Yun Xing, Wei-Wen Yi, Hui-Bin Ruan, Yu Zhang
Publikováno v:
Machine Intelligence Research. 19:89-114
Knowledge mining is a widely active research area across disciplines such as natural language processing (NLP), data mining (DM), and machine learning (ML). The overall objective of extracting knowledge from data source is to create a structured repr
Publikováno v:
International Journal of Interactive Multimedia and Artificial Intelligence, Vol 5, Iss 4, Pp 28-34 (2019)
Re-Unir. Archivo Institucional de la Universidad Internacional de La Rioja
instname
Re-Unir. Archivo Institucional de la Universidad Internacional de La Rioja
instname
Topic modeling algorithms are statistical methods that aim to discover the topics running through the text documents. Using topic models in machine learning and text mining is popular due to its applicability in inferring the latent topic structure o
Publikováno v:
Natural Language Processing and Chinese Computing ISBN: 9783030884826
NLPCC (2)
NLPCC (2)
Detecting when there is a domain drift between training and inference data is important for any model evaluated on data collected in real time. Many current data drift detection methods only utilize input features to detect domain drift. While effect
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a85f9d8b87fdd1740a1a5320624d3fdb
https://doi.org/10.1007/978-3-030-88483-3_24
https://doi.org/10.1007/978-3-030-88483-3_24
Publikováno v:
Natural Language Processing and Chinese Computing ISBN: 9783030604561
NLPCC (2)
NLPCC (2)
The ability to explain the behavior of a Machine Learning (ML) model as a black box to people is becoming essential due to wide usage of ML applications in critical areas ranging from medicine to commerce. Case-Based Reasoning (CBR) received a specia
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1dbc5dd9038aecc25b166102b56918cd
https://doi.org/10.1007/978-3-030-60457-8_37
https://doi.org/10.1007/978-3-030-60457-8_37
Autor:
Mohsen Pourvali, Salvatore Orlando
Publikováno v:
Journal of Intelligent Systems, Vol 29, Iss 1, Pp 1109-1121 (2018)
This paper explores a multi-strategy technique that aims at enriching text documents for improving clustering quality. We use a combination of entity linking and document summarization in order to determine the identity of the most salient entities m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5814d97c0b59b0b73f82eaab54a72bd3
http://hdl.handle.net/10278/3711322
http://hdl.handle.net/10278/3711322
Publikováno v:
Information Retrieval Technology ISBN: 9783319289397
AIRS
AIRS
Automatic text summarization is the process of reducing the size of a text document, to create a summary that retains the most important points of the original document. It can thus be applied to summarize the original document by decreasing the impo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dc1abeb4799a76705ba83fae735d10d8
http://hdl.handle.net/10278/3670250
http://hdl.handle.net/10278/3670250
Autor:
Mohsen Pourvali, Ph.D. Mohammad
Publikováno v:
International Journal of Advanced Computer Science and Applications. 3
The technology of automatic document summarization is maturing and may provide a solution to the information overload problem. Nowadays, document summarization plays an important role in information retrieval. With a large volume of documents, presen