Zobrazeno 1 - 10
of 42
pro vyhledávání: '"Mohr, Joana"'
Autor:
Mohr, Joana
Given an interval $[a,b]$ the associated $X\,Y$ model is the space $\Omega=[a,b]^\mathbb{N}$ with an a priori probability $\nu $ on the state space $[a,b]$. We will present here the case of the product type potential on the $X\,Y$ model and in this s
Externí odkaz:
http://arxiv.org/abs/1805.09858
Autor:
Lopes, Artur O., Mohr, Joana
Assume that $f$ is a continuous transformation $f:S^1 \to S^1$. We consider here the cases where $f$ is either the transformation $f(z)=z^2$ or $f$ is a smooth diffeomorphism of the circle $S^1$. Consider a fixed continuous potential $\tau:S^1=[0,1)
Externí odkaz:
http://arxiv.org/abs/1512.07985
Autor:
Mohr, Joana, Souza, Rafael Rigão
Here we present an ergodic theorem which adapts a Theorem by J. Elton to the classical thermodynamical formalism and to ergodic transport. First, we discuss how Elton's theorem can be used to characterise Gibbs measures for expanding maps. Such chara
Externí odkaz:
http://arxiv.org/abs/1509.06347
We consider certain self-adjoint observables for the KMS state associated to the Hamiltonian $H= \sigma^x \otimes \sigma^x$ over the quantum spin lattice $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes ...$. For a fixed observable of
Externí odkaz:
http://arxiv.org/abs/1505.01305
Autor:
Mohr, Joana
Publikováno v:
Biblioteca Digital de Teses e Dissertações da UFRGSUniversidade Federal do Rio Grande do SulUFRGS.
Este trabalho será dividido em dois capítulos. Em ambos exibiremos a função de desvio e um princípio de grandes desvios para uma sequência de medidas que convergem, para uma medida minimizante no primeiro problema e para uma medida maximizante
Externí odkaz:
http://hdl.handle.net/10183/13700
Autor:
Mohr, Joana
Publikováno v:
Biblioteca Digital de Teses e Dissertações da UFRGSUniversidade Federal do Rio Grande do SulUFRGS.
Neste trabalho estamos interessados em estudar o conjunto das geodésicas que minimizam comprimento de arco entre dois pontos quaisquer. Estas são chamadas de geodésicas minimais. Mais precisamente, dada uma métrica riemanniana g sobre o wro bidim
Externí odkaz:
http://hdl.handle.net/10183/122239
Publikováno v:
Ergod. Th. Dynam. Sys. 35 (2014) 1925-1961
We generalize several results of the classical theory of Thermodynamic Formalism by considering a compact metric space $M$ as the state space. We analyze the shift acting on $M^\mathbb{N}$ and consider a general a-priori probability for defining the
Externí odkaz:
http://arxiv.org/abs/1210.3391
Publikováno v:
Applied Mathematics & Optimization August 2013, Volume 68, Issue 1, pp 99-143
In this paper we consider symmetric games where a large number of players can be in any one of d states. We derive a limiting mean field model and characterize its main properties. This mean field limit is a system of coupled ordinary differential eq
Externí odkaz:
http://arxiv.org/abs/1203.3173
In this paper we investigate the asymptotic behavior of the semi-classical limit of Wigner measures defined on the tangent bundle of the one-dimensional torus. In particular we show the convergence of Wigner measures to the Mather measure on the tang
Externí odkaz:
http://arxiv.org/abs/1111.3187
Mean field games is a recent area of study introduced by Lions and Lasry in a series of seminal papers in 2006. Mean field games model situations of competition between large number of rational agents that play non-cooperative dynamic games under cer
Externí odkaz:
http://arxiv.org/abs/1011.2918