Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Mohammed Kadi Attouch"'
Publikováno v:
AIMS Mathematics, Vol 8, Iss 7, Pp 15844-15875 (2023)
Traditionally, regression problems are examined using univariate characteristics, including the scale function, marginal density, regression error, and regression function. When the correlation between the response and the predictor is reasonably str
Externí odkaz:
https://doaj.org/article/c8c129d4d34f4501bd7c4efb92a16317
Publikováno v:
AIMS Mathematics, Vol 8, Iss 6, Pp 13000-13023 (2023)
In this paper, we consider a new method dealing with the problem of estimating the scoring function $ \gamma_a $, with a constant $ a $, in functional space and an unknown scale parameter under a nonparametric robust regression model. Based on the $
Externí odkaz:
https://doaj.org/article/f1c10a68c4a8485797566572ca3c37e6
Autor:
Fatimah Alshahrani, Ibrahim M. Almanjahie, Tawfik Benchikh, Omar Fetitah, Mohammed Kadi Attouch
Publikováno v:
Journal of Mathematics, Vol 2023 (2023)
This study investigates the estimation of the regression function using the kernel method in the presence of missing at random responses, assuming spatial dependence, and complete observation of the functional regressor. We construct the asymptotic p
Externí odkaz:
https://doaj.org/article/7be291691c29444c8a90f977718658b0
Publikováno v:
Revstat Statistical Journal, Vol 12, Iss 3 (2014)
In this paper, we study the nonparametric estimator of the conditional hazard function using the k nearest neighbors (k-NN) estimation method for a scalar response variable given a random variable taking values in a semi-metric space. We give the alm
Externí odkaz:
https://doaj.org/article/fc1326140bf44870b919d7078df45e66
Publikováno v:
Computers, Materials & Continua. 74:6307-6319
Publikováno v:
Hacettepe Journal of Mathematics and Statistics
We discuss in this paper the robust equivariant nonparametric regression estimators for ergodic data with the k Nearst Neighbour (kNN) method. We consider a new robust regression estimator when the scale parameter is unknown. The principal aim is to
Publikováno v:
Mathematical Problems in Engineering. 2022:1-15
As in parametric regression, nonparametric kernel regression is essential for examining the relationship between response variables and covariates. In both methods, outliers may affect the estimators, and hence robustness is essential to deal with pr
Publikováno v:
Metrika.
Publikováno v:
Computers, Materials & Continua. 67:2681-2694
Publikováno v:
Mathematica Slovaca. 70:1469-1490
In this paper, we investigate the asymptotic properties of a nonparametric estimator of the relative error regression given a functional explanatory variable, in the case of a scalar censored response, we use the mean squared relative error as a loss