Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Mohammed Chehabi"'
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 41 (2022)
This work deals with the maximum principle for the discrete Neumann or Dirichlet problem -Δφp(Δu(k - 1)) = λm(k)φp(u(k))+ h(k) in [1, n]. We study the existence and nonexistence of positive solution and its uniqueness.
Externí odkaz:
https://doaj.org/article/7a4eb6db27e54f04a5367a211f1af2d6
Autor:
Mohammed Chehabi, Omar Chakrone
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 36, Iss 2 (2018)
By establishing some results around the first eigenvalue λ1(m) for the following problem: -Δ(φp(Δu(k - 1)))= λm(k)φp(u(k)); k∈ [1; n]; u(0) = 0 = u(n + 1); where m ∈ M([1; n]) = {m : [1; n] → R /∃ k∈ [1; n]; m(k) > 0} ; as the constan
Externí odkaz:
https://doaj.org/article/88fe4055fe714ea19030f92c72f141f4
Publikováno v:
Electronic Journal of Differential Equations, Vol Conference, Iss 14, Pp 83-94 (2006)
We prove the solvability of the Dirichlet problem $$displaylines{ Au = f(u)+h quadext{in } Omega , cr u = 0 quadext{on }partial Omega }$$ for a given $h$, under a condition involving only the asymptotic behaviour of the potential $F$ of $f$, where $A
Externí odkaz:
https://doaj.org/article/93018279bf754eccba9ba7c94e0739fa
Publikováno v:
Electronic Journal of Differential Equations, Vol 2006, Iss 63, Pp 1-13 (2006)
In this paper, we study the existence of solutions to the following nonlinear elliptic problem in a bounded subset $Omega$ of $mathbb{R}^{N}$: $$displaylines{ -Delta _{p}u = f(x,u, abla u)+mu quad hbox{in } Omega ,cr u = 0 quad hbox{on }partial Omega
Externí odkaz:
https://doaj.org/article/e3684b8a9c3a431aaf889fd038aa210c
Publikováno v:
Proyecciones (Antofagasta). 41:217-247
In this paper we study a nonlinear boundary eigenvalue problema governed by the one-dimensional p-Laplacian operator with impulse, we give some properties of the first eigenvalue λ1 and we prove the existence of eigenvalues sequence {λn}n∈N∗ by
Publikováno v:
Rendiconti del Circolo Matematico di Palermo Series 2.
Publikováno v:
Journal of Difference Equations and Applications. 26:802-817
In the study of problems of the type − Δ ( Δ u ( k − 1 ) ) = f ( k , u ( k ) ) + h ( k ) , conditions are generally imposed on the asymptotic behaviour of f ( k , u ( k ) ) with respect to the spec...
Publikováno v:
Applied Mathematics and Computation. 342:112-117
This work deals with the antimaximum principle for the discrete Neumann and Dirichlet problem − Δ φ p ( Δ u ( k − 1 ) ) = λ m ( k ) | u ( k ) | p − 2 u ( k ) + h ( k ) in [ 1 , n ] . We prove the existence of three real numbers 0 ≤ a λ =
Autor:
Omar Chakrone, Mohammed Chehabi
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 36, Iss 2, Pp 151-167 (2018)
By establishing some results around the first eigenvalue λ1(m) for the following problem: -Δ(φp(Δu(k - 1)))= λm(k)φp(u(k)); k∈ [1; n]; u(0) = 0 = u(n + 1); where m ∈ M([1; n]) = {m : [1; n] → R /∃ k∈ [1; n]; m(k) > 0} ; as the constan
Publikováno v:
Lobachevskii Journal of Mathematics. 32:254-269
In this paper, we study the existence of solutions to the following unilateral problem: $$\left\{ \begin{gathered} u \in K_\psi ,f(x,u,\nabla u) \in L^1 (\Omega ) \hfill \\ \left\langle { - \Delta _p (u),T_k (v - u)} \right\rangle \geqslant \int\limi