Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Mohammed Aassila"'
Autor:
Mohammed Aassila, Abbes Benaissa
Publikováno v:
Electronic Journal of Differential Equations, Vol 2002, Iss 91, Pp 1-21 (2002)
In this paper we prove the existence of a global solution and study its decay for the solutions to a quasilinear wave equation with a general nonlinear dissipative term by constructing a stable set in $H^{2}cap H_{0}^{1}$. Submitted July 02, 2002. Pu
Externí odkaz:
https://doaj.org/article/59725c5155ae4c1fbcfe24b33622535d
Autor:
Mohammed Aassila
Publikováno v:
Electronic Journal of Differential Equations, Vol 1998, Iss 18, Pp 1-6 (1998)
We prove the strong asymptotic stability of solutions to a second order evolution equation when the LaSalle's invariance principle cannot be applied due to the lack of monotonicity and compactness.
Externí odkaz:
https://doaj.org/article/6365ec137eb9450eb9ad820a389145ed
Autor:
Mohammed Aassila
Using the invariant measures of homeomorphisms, we study in this paper the asymptotic behavior of the energy E(t) of an hyperbolic partial differential equation in amoving domain. The behavior of E(t) as t ⊸ ∞ depends essentially on the number th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c9729e38a04fd5548ea7464aac005fba
http://doc.rero.ch/record/316992/files/574_2004_Article_5.pdf
http://doc.rero.ch/record/316992/files/574_2004_Article_5.pdf
Autor:
Mohammed Aassila
Publikováno v:
IMA Journal of Applied Mathematics. 69:93-109
In this paper we study the boundary stabilization of the heat equation. The stabilization is achieved by applying either Dirichlet or Neumann feedback boundary control. Furthermore, we consider the asymptotic behaviour of the heat equation with gener
Autor:
Mohammed Aassila
Publikováno v:
Journal of Applied Mathematics and Computing. 11:81-108
We consider the Korteweg-de Vries-Burgers (KdVB) equation on the domain [0,1]. We derive a control law which guarantees L2-global exponential stability, H3-global asymptotic stability, and H3-semiglobal exponential stability.
Autor:
Mohammed Aassila
Publikováno v:
Applied Mathematics and Computation. 137:1-14
We study a unilateral problem for the nonhomogeneous degenerated Kirchhoff equation with a blowing up term. Making use of the penalty method and Galerkin's approximations, we establish global existence and uniqueness theorems.
Autor:
Mohammed Aassila
Publikováno v:
Journal of Computational and Applied Mathematics. 146(2):481-491
We consider a nonlinear thermoelastic system in Rn. We prove the well-posedness and give the decay rate of the energy as t → + ∞. Our main tools are the semi-group theory and the Fourier splitting method. We extend some results of Kim (SIAM J. Ma
Autor:
Mohammed Aassila
Publikováno v:
Zeitschrift für angewandte Mathematik und Physik. 53:747-768
We study the asymptotic behavior of the system governing the nonlinear vibrations of a Timoshenko beam.
Autor:
Mohammed Aassila, Dogan Kaya
Publikováno v:
Physics Letters A. 299:201-206
The explicit solutions to a generalized Korteweg–de Vries equation (KdV for short) with initial condition are calculated by using the Adomian decomposition method. Using this approach we obtained for the numerical solutions of initial-value KdV equ
Autor:
Mohammed Aassila
Publikováno v:
Discrete & Continuous Dynamical Systems - A. 8:851-864
We study the asymptotic behavior of solutions of the damped linear system $u_{t t}(t)+Au(t)+Bu_t(t)=0, t\geq 0$ in the context of Hilbert spaces. We present abstract theorems on the decay rate, moreover an adequate example is presented to illustrate