Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Mohammad R. Piri"'
Autor:
Saeid Alikhani, Mohammad R. Piri
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Vol 20, Iss 1, Pp 29-34 (2023)
AbstractFor an arbitrary invariant [Formula: see text] of a graph G, the [Formula: see text]vertex stability number [Formula: see text] is the minimum number of vertices of G whose removal results in a graph [Formula: see text] with [Formula: see tex
Externí odkaz:
https://doaj.org/article/e218dd6a5a3e4844979a8996bb47314b
Autor:
Mohammad R. Piri, Saeid Alikhani
Publikováno v:
Opuscula Mathematica, Vol 41, Iss 2, Pp 245-257 (2021)
We introduce and study the dominated edge coloring of a graph. A dominated edge coloring of a graph \(G\), is a proper edge coloring of \(G\) such that each color class is dominated by at least one edge of \(G\). The minimum number of colors among al
Externí odkaz:
https://doaj.org/article/779746c85547406f8b86b83d8092bab7
Autor:
Saeid Alikhani, Mohammad R. Piri
For an arbitrary invariant $\rho (G)$ of a graph $G$, the $\rho-$vertex stability number $vs_{\rho}(G)$ is the minimum number of vertices of $G$ whose removal results in a graph $H\subseteq G$ with $\rho (H)\neq \rho (G)$ or with $E(H)=\varnothing$.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6ef4b19a9139ca2eeb70f7e6823627aa
http://arxiv.org/abs/2004.10551
http://arxiv.org/abs/2004.10551
Autor:
Saeid Alikhani, Mohammad R. Piri
Publikováno v:
Opuscula Mathematica, Vol 41, Iss 2, Pp 245-257 (2021)
We introduce and study the dominated edge coloring of a graph. A dominated edge coloring of a graph $G$ is a proper edge coloring of $G$ such that each color class is dominated by at least one edge of $G$. The minimum number of colors among all domin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3352f201a62bd72a9fc010266fc77408