Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Mohammad Al-Khlyleh"'
Publikováno v:
AIMS Mathematics, Vol 9, Iss 7, Pp 19812-19821 (2024)
Let $ A_j, B_j, P_j $, and $ Q_j \in M_{n}(\mathbb{C}) $, where $ j = 1, 2, \dots, m $. For a real number $ c \in [0, 1] $, we prove the following interpolation inequality: $ \begin{equation*} {\left\vert\kern-0.1ex\left\vert\kern-0.1ex\left\vert
Externí odkaz:
https://doaj.org/article/bef768ed6f45482fa68801be62887d20
Autor:
Fadi Alrimawi, Mohammad Al-Khlyleh
Publikováno v:
Positivity. 26
Publikováno v:
Methods of Functional Analysis and Topology. 26:201-215
Autor:
Mohammad Al-khlyleh, Fadi Alrimawi
Publikováno v:
Mathematical Inequalities & Applications. :1135-1143
Autor:
Mohammad Al-khlyleh, Mowaffaq Hajja
Publikováno v:
Results in Mathematics. 74
A real symmetric quadratic form $$f = f(Z_1,\ldots ,Z_n)$$ in the n non-commuting indeterminates $$Z_1,\ldots ,Z_n$$ is said to be d-positive (respectively, d-copositive) if for all real symmetric (respectively, positive semidefinite) $$(d \times d)$
Autor:
Mohammad Al-khlyleh, Fuad Kittaneh
Publikováno v:
Linear and Multilinear Algebra. 65:922-929
Audenaert recently obtained an inequality for unitarily invariant norms that interpolates between the arithmetic–geometric mean inequality and the Cauchy–Schwarz inequality for matrices. A refined version of Audenaert’s inequality for the Hilbe