Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Mohamed Mkaouar"'
Publikováno v:
Acta Arithmetica.
Somme des chiffres et répartition dans les classes de congruence pour les palindromes ellipséphiques
Publikováno v:
Acta Mathematica Hungarica. 151:409-455
We generalize several results concerning the distribution in residue classes of the sum of digits function to the case of palindromes with missing digits.
Publikováno v:
Journal of Number Theory. 171:358-390
Let $P, Q\in \mathbb{F}_q[X]\setminus\{0\}$ be two coprime polynomials over the finite field $\mathbb{F}_q$ with $\operatorname{deg}{P} > \operatorname{deg}{Q}$. We represent each polynomial $w$ over $\mathbb{F}_q$ by \[w=\sum_{i=0}^k\frac{s_i}{Q}{\l
Publikováno v:
Taiwanese J. Math. 23, no. 4 (2019), 777-798
Let $f$ be a strongly $q$-additive function with integer values. Given an integer $k \geq 2$, we try to estimate the number of positive integers $n \leq N$ (resp. primes $p \leq N$) for which $f(n)$ is $k$-free (resp. $f(p)$ is $k$-free).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::26aaafe0de5d311347a54f6d08b48b16
https://projecteuclid.org/euclid.twjm/1563436868
https://projecteuclid.org/euclid.twjm/1563436868
Autor:
Mohamed Mkaouar, Rafik Bouaziz
Publikováno v:
Techniques et sciences informatiques. 35:357-388
Autor:
Mohamed Mkaouar, Wiem Gadri
Publikováno v:
Bulletin of the Korean Mathematical Society. 53:699-709
Our paper is devoted to the study of certain diophantineequations on the ring of polynomials over a finite field, which are inti-mately related to algebraic formal power series which have partial quo-tients of unbounded degree in their continued fr
Autor:
Mohamed Mkaouar
Publikováno v:
Periodica Mathematica Hungarica. 72:139-150
We estimate exponential sums over a non-homogenous Beatty sequence with restriction on strongly q-additive functions. We then apply our result in a few special cases to obtain an asymptotic formula for the number of primes $$p=\lfloor \alpha n +\beta
Publikováno v:
Canadian Mathematical Bulletin. 58:704-712
The Chowla conjecture states that if t is any given positive integer, there are infinitely many prime positive integers N such that Per() = t, where Per() is the period length of the continued fraction expansion for . C. Friesen proved that, for any
Publikováno v:
The Ramanujan Journal. 42:173-197
Si q≥2 est un nombre entier, on designe par Sq(n) la somme des chiffres en base q du nombre entier naturel n et par vq(n) sa valuation q-adique. L’objectif de cet article est d’etudier des sommes d’exponentielles de la forme ∑n≤xexp(2iπ(
Publikováno v:
Monatshefte für Mathematik. 175:161-173
Properties of Pisot numbers have long been of interest. One line of questioning, initiated by Erdos, Joo and Komornik in (Bull Soc Math France 118:377–390, 1990), is the study of the set \(\Lambda _{m}(\beta )\) the spectrum of \(\beta \) and the d