Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Mohamed Ibn Khedher"'
Publikováno v:
IEEE Access, Vol 11, Pp 33401-33413 (2023)
Deep neural networks have been widely used in several complex tasks such as robotics, self-driving cars, medicine, etc. However, they have recently shown to be vulnerable in uncertain environments where inputs are noisy. As a consequence, the robustn
Externí odkaz:
https://doaj.org/article/5d72c298a9df4d08b3c11d0e701472cb
Autor:
Houda Jmila, Mohamed Ibn Khedher
Publikováno v:
Computer Networks. 214:109073
Publikováno v:
International conference on Artificial Intelligence and Soft Computing
International conference on Artificial Intelligence and Soft Computing, Jun 2021, Zakopane, Poland
Artificial Intelligence and Soft Computing ISBN: 9783030878962
ICAISC (2)
International conference on Artificial Intelligence and Soft Computing, Jun 2021, Zakopane, Poland
Artificial Intelligence and Soft Computing ISBN: 9783030878962
ICAISC (2)
Constrained clustering problems are often considered in massive data clustering and analysis. They are used in modeling various issues in anomaly detection, classification, systems’ misbehaviour, etc. In this paper, we focus on generalizing the K-M
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f2e57729c6dcee8c3618da615e486dd4
https://hal.archives-ouvertes.fr/hal-03400812
https://hal.archives-ouvertes.fr/hal-03400812
Publikováno v:
intelligence conference on agents and artificial intelligence
intelligence conference on agents and artificial intelligence, Feb 2021, Vienna, Austria
ICAART (2)
intelligence conference on agents and artificial intelligence, Feb 2021, Vienna, Austria
ICAART (2)
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9c2e90431b7841b3c6722fa806db0ef1
https://hal.archives-ouvertes.fr/hal-03094878
https://hal.archives-ouvertes.fr/hal-03094878
Publikováno v:
International Conference on Agents and Artificial Intelligence
International Conference on Agents and Artificial Intelligence, Feb 2021, Vienna, Austria
ICAART (2)
International Conference on Agents and Artificial Intelligence, Feb 2021, Vienna, Austria
ICAART (2)
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e1c0d075d4ccef8a6a8cc10d4a9be5e3
https://hal.archives-ouvertes.fr/hal-03043107
https://hal.archives-ouvertes.fr/hal-03043107
Publikováno v:
IInternational Conference on Agents and Artificial Intelligence
IInternational Conference on Agents and Artificial Intelligence, Feb 2021, Vienna, Austria
ICAART (2)
IInternational Conference on Agents and Artificial Intelligence, Feb 2021, Vienna, Austria
ICAART (2)
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::efca72e3e6c86fd17ab139c269911301
https://hal.archives-ouvertes.fr/hal-03043243
https://hal.archives-ouvertes.fr/hal-03043243
Autor:
Mehdi Rezzoug, Mohamed Ibn Khedher
Publikováno v:
ICAART (2)
International Conference on Agents and Artificial Intelligence
International Conference on Agents and Artificial Intelligence, Feb 2021, Vienna, Austria
International Conference on Agents and Artificial Intelligence
International Conference on Agents and Artificial Intelligence, Feb 2021, Vienna, Austria
International audience
Publikováno v:
2020 17th International Multi-Conference on Systems, Signals & Devices (SSD)
SSD 2020: 17th international multi-conference on Systems, Signals and Devices
SSD 2020: 17th international multi-conference on Systems, Signals and Devices, Jul 2020, Monastir (online), Tunisia. pp.34-39, ⟨10.1109/SSD49366.2020.9364134⟩
SSD
HAL
SSD 2020: 17th international multi-conference on Systems, Signals and Devices
SSD 2020: 17th international multi-conference on Systems, Signals and Devices, Jul 2020, Monastir (online), Tunisia. pp.34-39, ⟨10.1109/SSD49366.2020.9364134⟩
SSD
HAL
International audience; Retrieving and indexing historical Arabic documents remain a very significant challenge. The purpose of this paper is to compare the feature representation spaces for word spotting in historical Arabic documents. Our goal is t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2efd41c990f8910bb539b8497260a1eb
https://hal.archives-ouvertes.fr/hal-03094910
https://hal.archives-ouvertes.fr/hal-03094910
Autor:
Asma Trabelsi, Dimitri Bettebghor, Mallek Mziou Sallami, Mohamed Ibn Khedher, Samy Kerboua-Benlarbi
Publikováno v:
26th International Conference on Neural Information Processing of the Asia-Pacific Neural Network Society
26th International Conference on Neural Information Processing of the Asia-Pacific Neural Network Society, Dec 2019, Sydney, Australia. pp.274-286, ⟨10.1007/978-3-030-36808-1_30⟩
Communications in Computer and Information Science ISBN: 9783030368074
ICONIP (4)
26th International Conference on Neural Information Processing of the Asia-Pacific Neural Network Society, Dec 2019, Sydney, Australia. pp.274-286, ⟨10.1007/978-3-030-36808-1_30⟩
Communications in Computer and Information Science ISBN: 9783030368074
ICONIP (4)
Embedding machine or deep learning software into safety-critical systems such as autonomous vehicles requires software verification and validation. Such software adds non traceable hazards to traditional hardware and sensors failures, not to mention
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5b8b91c830f4c3eb95b00dada49fe0db
https://hal.archives-ouvertes.fr/hal-02473613
https://hal.archives-ouvertes.fr/hal-02473613
Publikováno v:
ICONIP 2019: 26th International Conference on Neural Information Processing of the Asia-Pacific Neural Network Society
ICONIP 2019: 26th International Conference on Neural Information Processing of the Asia-Pacific Neural Network Society, Dec 2019, Sydney, Australia
HAL
ICONIP 2019: 26th International Conference on Neural Information Processing of the Asia-Pacific Neural Network Society, Dec 2019, Sydney, Australia
HAL
International audience; Word Spotting of Historical Arabic Documents is a challenging task due to the complexity of document layouts. This paper proposes a novel word spotting approach that consists of learning feature representation to describe word
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::3ebe17874f6d18ec46c78a1fdd70d218
https://hal.archives-ouvertes.fr/hal-02473637
https://hal.archives-ouvertes.fr/hal-02473637