Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Mohamed Bécha Kaâniche"'
Publikováno v:
Multimedia Tools and Applications.
Publikováno v:
Pattern Recognition. 91:308-321
Low variance direction of the training dataset can carry crucial information when building a performant one-class classifier. Covariance-guided One-Class Support Vector Machine (COSVM) emphasizes the low variance direction of the training dataset whi
Publikováno v:
Signal, Image and Video Processing. 13:1503-1510
Publikováno v:
VISIGRAPP (4: VISAPP)
Publikováno v:
VISIGRAPP (4: VISAPP)
This paper presents a new method for edge detection based on both Lab color and depth images. The principal challenge of multispectral edge detection consists of integrating different information into one meaningful result, without requiring empirica
Publikováno v:
Advanced Concepts for Intelligent Vision Systems ISBN: 9783319703527
ACIVS
ACIVS
Systems that rely on Face Detection have gained great importance ever, since large-scale databases of thousands of face images are collected from several sources. Thus, the use of an outperforming face detector becomes a challenging problem. Differen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::26354e88f8f17c2755ec371ada044d2e
https://doi.org/10.1007/978-3-319-70353-4_15
https://doi.org/10.1007/978-3-319-70353-4_15
Publikováno v:
Machine Learning and Knowledge Discovery in Databases ISBN: 9783319462264
ECML/PKDD (2)
ECML/PKDD (2)
Covariance-guided One-Class Support Vector Machine (COSVM) is a very competitive kernel classifier, as it emphasizes the low variance projectional directions of the training data, which results in high accuracy. However, COSVM training involves solvi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::920f03eeab768802d0446f42c973290f
https://doi.org/10.1007/978-3-319-46227-1_2
https://doi.org/10.1007/978-3-319-46227-1_2
Publikováno v:
IEEE Transactions on Pattern Analysis and Machine Intelligence
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012
We introduce a new gesture recognition framework based on learning local motion signatures (LMSs) of HOG descriptors introduced by [1]. Our main contribution is to propose a new probabilistic learning-classification scheme based on a reliable trackin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::24399fbab9952a494fd616755aaa797b
https://hal.inria.fr/hal-00696371
https://hal.inria.fr/hal-00696371
Autor:
Mohamed-Bécha Kaâniche
Publikováno v:
Mohamed-Bécha Kaâniche
Signal and Image processing. Université Nice Sophia Antipolis, 2009. English
Signal and Image processing. Université Nice Sophia Antipolis, 2009. English
In this thesis, we aim to recognize gestures (e.g. hand raising) and more generally short actions (e.g. fall, bending) accomplished by an individual. Many techniques have already been proposed for gesture recognition in specific environment (e.g. lab
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::8214882f5be16893365baab5869a7ab4
https://tel.archives-ouvertes.fr/tel-00428690/file/medbecha-thesis.pdf
https://tel.archives-ouvertes.fr/tel-00428690/file/medbecha-thesis.pdf