Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Mohamed Abdelmonim Hassan Darwish"'
Sparse RKHS estimation via globally convex optimization and its application in LPV-IO identification
Publikováno v:
Automatica, 115:108914. Elsevier
Automatica
Automatica, Elsevier, 2020, 115, pp.108914. ⟨10.1016/j.automatica.2020.108914⟩
Automatica
Automatica, Elsevier, 2020, 115, pp.108914. ⟨10.1016/j.automatica.2020.108914⟩
International audience; Function estimation using the Reproducing Kernel Hilbert Space (RKHS) framework is a powerful tool for identification of a general class of nonlinear dynamical systems without requiring much a priori information on model order
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3b84b3fb348b1daf5f061fd8314a2249
https://research.tue.nl/nl/publications/71ae006a-2c2f-4e5d-a196-509e71ab4fa5
https://research.tue.nl/nl/publications/71ae006a-2c2f-4e5d-a196-509e71ab4fa5
Autor:
PB Pepijn Cox, Mohamed Abdelmonim Hassan Darwish, Gianluigi Pillonetto, Roland Tóth, Ioannis Proimadis
Publikováno v:
Automatica. 97:92-103
We consider networked control systems (NCSs) composed of a linear plant and a linear controller interconnected by packet-based communication channels with communication constraints. We are interested in the setup where direct-feedthrough terms are pr
Publikováno v:
2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017, 2170-2175
STARTPAGE=2170;ENDPAGE=2175;TITLE=2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017
CDC
STARTPAGE=2170;ENDPAGE=2175;TITLE=2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017
CDC
State estimation of nonlinear stochastic system in the setting of event-based (EB) measurements is quite challenging, because the measurements are not available at each sampling period, but are available only when a certain pre-specified event occurs
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b88b0f6a3e8389225ce73636d640acab
https://doi.org/10.1109/cdc.2017.8263966
https://doi.org/10.1109/cdc.2017.8263966
Publikováno v:
CDC
54th IEEE Conference on Decision and Control (CDC 2015), 15-18 December 2015, Osaka, Japan, 66-71
STARTPAGE=66;ENDPAGE=71;TITLE=54th IEEE Conference on Decision and Control (CDC 2015), 15-18 December 2015, Osaka, Japan
54th IEEE Conference on Decision and Control (CDC 2015), 15-18 December 2015, Osaka, Japan, 66-71
STARTPAGE=66;ENDPAGE=71;TITLE=54th IEEE Conference on Decision and Control (CDC 2015), 15-18 December 2015, Osaka, Japan
In this paper, we introduce a nonparametric approach in a Bayesian setting to efficiently estimate, both in the stochastic and computational sense, linear parameter-varying (LPV) input-output models under general noise conditions of Box-Jenkins (BJ)