Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Mohamed A. Mamon"'
Autor:
Alaa H. El-Qadeem, Gangadharan Murugusundaramoorthy, Borhen Halouani, Ibrahim S. Elshazly, Kaliappan Vijaya, Mohamed A. Mamon
Publikováno v:
Symmetry, Vol 16, Iss 11, p 1429 (2024)
A new class BΣλ(γ,κ) of bi-starlike λ-pseudo functions related to the second Einstein function is presented in this paper. c2 and c3 indicate the initial Taylor coefficients of ϕ∈BΣλ(γ,κ), and the bounds for |c2| and |c3| are obtained. Ad
Externí odkaz:
https://doaj.org/article/69cf6c3ec6fb47bfa5d1df9f2c5477f3
Publikováno v:
Journal of Function Spaces, Vol 2022 (2022)
Motivated by q-calculus, subordination principle, and the second Einstein function, we define two families of bi-univalent analytic functions on the open unit disc of the complex plane. We deduce estimates for the first two Maclaurin’s coefficients
Externí odkaz:
https://doaj.org/article/e15c428a5c3645a08e314bcc90c09466
Publikováno v:
Journal of Mathematics, Vol 2022 (2022)
Our objective in this paper is to introduce a q-analog of the generalized Dini function. Also, we investigate the lower bound for the ratio of the q-generalized Dini function to its sequences of partial sums.
Externí odkaz:
https://doaj.org/article/06cec067d1cb4ed4b1496511026fd70d
Publikováno v:
Symmetry, Vol 14, Iss 4, p 758 (2022)
Motivated by q-calculus, we define a new family of Σ, which is the family of bi-univalent analytic functions in the open unit disc U that is related to the Einstein function E(z). We establish estimates for the first two Taylor–Maclaurin coefficie
Externí odkaz:
https://doaj.org/article/1294ad77646f42ea86191b2a49bb9f4a
Publikováno v:
Tbilisi Math. J. 13, iss. 4 (2020), 23-32
Our objective in this paper is to introduce and investigate comprehensive-constructed subclasses of normalized analytic and bi-univalent functions on the unit open disc. Bounds for the second and third Tayler-Maclaurin coefficients of functions belon
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ea9354eb686fed05cb7b0696b1691e05
http://arxiv.org/abs/1908.08042
http://arxiv.org/abs/1908.08042