Zobrazeno 1 - 10
of 294
pro vyhledávání: '"Mohamed, Jleli"'
Autor:
Mohamed Jleli, Bessem Samet
Publikováno v:
AIMS Mathematics, Vol 9, Iss 10, Pp 29001-29017 (2024)
In this paper, we first introduced the notion of $ \theta $-hyperbolic sine distance functions on a metric space and studied their properties. We investigated the existence and uniqueness of fixed points for some classes of single-valued mappings def
Externí odkaz:
https://doaj.org/article/1808ed2407314650b91522ff5cb6704b
Autor:
Mohamed Jleli, Bessem Samet
Publikováno v:
AIMS Mathematics, Vol 9, Iss 9, Pp 23584-23597 (2024)
A nonlinear time-fractional cable equation posed on the interval $ (0, 1) $ under a homogeneous Dirichlet boundary condition is investigated in this work. The considered equation reflects the anomalous electro-diffusion in nerve cells. Using nonlinea
Externí odkaz:
https://doaj.org/article/ade0f6240179432c8b3b4081db2eb721
Autor:
Mohamed Jleli, Bessem Samet
Publikováno v:
AIMS Mathematics, Vol 9, Iss 8, Pp 21686-21702 (2024)
Nonexistence theorems constitute an important part of the theory of differential and partial differential equations. Motivated by the numerous applications of fractional differential equations in diverse fields, in this paper, we studied sufficient c
Externí odkaz:
https://doaj.org/article/a8cc09994563424788e3108fdd597ebc
Autor:
Mohamed Jleli, Bessem Samet
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-17 (2024)
Abstract We consider weak solutions of the nonlinear time-fractional biharmonic diffusion equation ∂ t α u + ∂ t β u + u x x x x = h ( t , x ) | u | p $\partial _{t}^{\alpha }u+\partial _{t}^{\beta }u+u_{xxxx}=h(t,x)|u|^{p}$ in ( 0 , ∞ ) × (
Externí odkaz:
https://doaj.org/article/e01e5ae687b1409195b2b9b3b8ad9a18
Publikováno v:
Mathematics in Engineering, Vol 5, Iss 2, Pp 1-35 (2023)
We give a new full explanation of the Tacoma Narrows Bridge collapse, occurred on November 7, 1940. Our explanation involves both structural phenomena, such as parametric resonances, and sophisticated mathematical tools, such as the Floquet theory. C
Externí odkaz:
https://doaj.org/article/124cb1430b1047ad888ec8650c71efa6
Publikováno v:
Bulletin of Mathematical Sciences, Vol 13, Iss 03 (2023)
In this paper, we consider a degenerate hyperbolic inequality in an exterior domain under three types of boundary conditions: Dirichlet-type, Neumann-type, and Robin-type boundary conditions. Using a unified approach, we show that all the considered
Externí odkaz:
https://doaj.org/article/ed2ef4cd924f4fe99bb5532200509f3c
Publikováno v:
AIMS Mathematics, Vol 8, Iss 5, Pp 11629-11650 (2023)
We are concerned with the study of existence and nonexistence of weak solutions for a class of hyperbolic inequalities with a Hardy potential singular on the boundary $ \partial B_1 $ of the annulus $ A = \left\{x\in \mathbb{R}^3: 1 < |x|\leq 2\right
Externí odkaz:
https://doaj.org/article/0fb8e590cac54a129cbbd38866939722
Publikováno v:
AIMS Mathematics, Vol 8, Iss 4, Pp 9230-9246 (2023)
We study the existence and nonexistence of weak solutions to a semilinear higher order (in time) evolution inequality involving a convection term in the exterior of the half-ball, under Dirichlet-type boundary conditions. A weight function of the for
Externí odkaz:
https://doaj.org/article/ad456b7dddbb449e82206084206c4e5d
Publikováno v:
Boundary Value Problems, Vol 2022, Iss 1, Pp 1-20 (2022)
Abstract We are concerned with the existence and nonexistence of global weak solutions for a certain class of time-fractional inhomogeneous pseudo-parabolic-type equations involving a nonlinearity of the form | u | p + ι | ∇ u | q $|u|^{p}+\iota |
Externí odkaz:
https://doaj.org/article/39d8a30cadb542f28f95826e66fc0aa8
Publikováno v:
Mathematics, Vol 11, Iss 24, p 4892 (2023)
We study a time-fractional parabolic inequality posed on a bounded interval and involving a wight function W, where the fractional derivative is considered in the Caputo sense. We establish a general condition ensuring that the set of weak solutions
Externí odkaz:
https://doaj.org/article/a517de7e3dc84f88adcfd251a10d78fd