Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Moghimi, GH. R."'
Let $\theta$ be an isomorphism on $L_0^{\infty} (w)^*$. In this paper, we investigate $\theta$-generalized derivations on $L_0^{\infty} (w)^*$. We show that every $\theta$-centralizing $\theta$-generalized derivation on $L_0^{\infty} (w)^*$ is a $\th
Externí odkaz:
http://arxiv.org/abs/2410.02565
In this paper, we investigate Jordan left $\alpha$-centralizer on algebras. We show that every Jordan left $\alpha$-centralizer on an algebra with a right identity is a left $\alpha$-centralizer. We also investigate this result for Banach algebras wi
Externí odkaz:
http://arxiv.org/abs/2410.02553
Autor:
Eisaei, M., Moghimi, Gh. R.
In this paper, we investigate $\theta$-derivations on Banach algebra $ L_0^{\infty} (w)^*$. First, we study the range of them and prove the Singer-Wermer conjucture. We also give a characterization of the space of all $\theta$-derivations on $ L_0^{\
Externí odkaz:
http://arxiv.org/abs/2403.18590
Autor:
Eisaei, M., Moghimi, Gh. R.
Let $A$ be a Banach algebra with a right identity $u$ such that $uA$ is commutative and semisimple. In this paper, we investigate symmetric bi-derivations of $A$ and detremine their range. We also study symmetric bi-derivations of $A$ with their $k$-
Externí odkaz:
http://arxiv.org/abs/2403.16052
Let $\theta$ be a homomorphism on $L_0^\infty({\Bbb R}^+, \omega)^*$. In this paper, we study left $\theta$-derivations on $L_0^\infty({\Bbb R}^+, \omega)^*$. We show that every left $\theta$-derivation on $L_0^\infty({\Bbb R}^+, \omega)^*$ is always
Externí odkaz:
http://arxiv.org/abs/2403.16036
In this paper, we study the types of Jordan derivations of a Banach algebra $A$ with a right identity $e$. We show that if $eA$ is commutative and semisimple, then every Jordan derivation of $ A $ is a derivation. In this case, Jordan derivations map
Externí odkaz:
http://arxiv.org/abs/2306.12529
Publikováno v:
Journal of Mathematical Extension; 2024, Vol. 18 Issue 5, p1-9, 9p
Autor:
Mehdipour, M. J.1 mehdipour@sutech.ac.ir, Moghimi, GH. R.2 moghimimath@pnu.ac.ir
Publikováno v:
Journal of Mathematical Extension. 2022, Vol. 16 Issue 1, p1-12. 12p.