Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Moez Baccouche"'
Autor:
Theo Jaunet, Christian Wolf, Moez Baccouche, Grigory Antipov, Corentin Kervadec, Romain Vuillemot
Publikováno v:
IEEE Transactions on Visualization and Computer Graphics
IEEE Transactions on Visualization and Computer Graphics, Institute of Electrical and Electronics Engineers, 2021
HAL
IEEE Transactions on Visualization and Computer Graphics, Institute of Electrical and Electronics Engineers, 2021
HAL
International audience; Visual Question Answering systems target answering open-ended textual questions given input images. They are a testbed for learning high-level reasoning with a primary use in HCI, for instance assistance for the visually impai
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1e9eae230dad3557c634f6541018cfab
https://hal.archives-ouvertes.fr/hal-03293079/document
https://hal.archives-ouvertes.fr/hal-03293079/document
Publikováno v:
CVPR
HAL
HAL
Visual Question Answering (VQA) models are notorious for their tendency to rely on dataset biases.The large and unbalanced diversity of questions and concepts involved in VQA and the lack of high standard annotated data tend to prevent models from le
Autor:
Grigory Antipov, Theo Jaunet, Moez Baccouche, Romain Vuillemot, Corentin Kervadec, Christian Wolf
Publikováno v:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2021, Nashville, Tennessee, United States
HAL
CVPR
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2021, Nashville, Tennessee, United States
HAL
CVPR
International audience; Since its inception, Visual Question Answering (VQA) is notoriously known as a task, where models are prone to exploit biases in datasets to find shortcuts instead of performing high-level reasoning. Classical methods address
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::95adaf263ba4dbeba628c79c0bb346bb
Publikováno v:
CVPR
CVPR 2019
CVPR 2019, Jun 2019, Long Beach, United States
CVPR 2019
CVPR 2019, Jun 2019, Long Beach, United States
We tackle the problem of finding good architectures for multimodal classification problems. We propose a novel and generic search space that spans a large number of possible fusion architectures. In order to find an optimal architecture for a given d
Publikováno v:
Pattern Recognition
Pattern Recognition, Elsevier, 2017, 72, pp.15-26. ⟨10.1016/j.patcog.2017.06.031⟩
Pattern Recognition, Elsevier, 2017, 72, pp.15-26. ⟨10.1016/j.patcog.2017.06.031⟩
International audience; Convolutional Neural Networks (CNNs) have been proven very effective for human demographics estimation by a number of recent studies. However, the proposed solutions significantly vary in different aspects leaving many open qu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b23bd07192048e7514201b5201c6f9ba
https://hal.archives-ouvertes.fr/hal-01556389
https://hal.archives-ouvertes.fr/hal-01556389
Publikováno v:
International Joint Conference on Biometrics
International Joint Conference on Biometrics, Oct 2017, Denver, United States
IJCB
International Joint Conference on Biometrics, Oct 2017, Denver, United States
IJCB
International audience; Despite the tremendous progress in face verification performance as a result of Deep Learning, the sensitivity to human age variations remains an Achilles' heel of the majority of the contemporary face verification software. A
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b5eb700e64a3e12ed21cbf247fe47270
https://hal.archives-ouvertes.fr/hal-01617381
https://hal.archives-ouvertes.fr/hal-01617381
Publikováno v:
IEEE International Conference on Image Processing
IEEE International Conference on Image Processing, Sep 2017, Pékin, China
ICIP
IEEE International Conference on Image Processing, Sep 2017, Pékin, China
ICIP
It has been recently shown that Generative Adversarial Networks (GANs) can produce synthetic images of exceptional visual fidelity. In this work, we propose the GAN-based method for automatic face aging. Contrary to previous works employing GANs for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::912eaa1e4faaa3e63b6d28c1f6c876a4
https://hal.archives-ouvertes.fr/hal-01617351
https://hal.archives-ouvertes.fr/hal-01617351
Autor:
Charles-Edmond Bichot, Julien Mille, Oya Celiktutan, Bulent Sankur, Eric Lombardi, Emmanuel Dellandréa, Christophe Garcia, Gonen Eren, Christian Wolf, Moez Baccouche, Mingyuan Jiu, Emre Dogan
Publikováno v:
Computer Vision and Image Understanding
Computer Vision and Image Understanding, Elsevier, 2014, 127, pp.14-30. ⟨10.1016/j.cviu.2014.06.014⟩
Computer Vision and Image Understanding, Elsevier, 2014, 127, pp.14-30. ⟨10.1016/j.cviu.2014.06.014⟩
International audience; Evaluating the performance of computer vision algorithms is classically done by reporting classification error or accuracy, if the problem at hand is the classification of an object in an image, the recognition of an activity
Publikováno v:
CVPR Workshops
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
Atelier international
Atelier international, Jun 2016, Las Vegas, United States
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
Atelier international
Atelier international, Jun 2016, Las Vegas, United States
This work describes our solution in the second edition of the ChaLearn LAP competition on Apparent Age Estimation. Starting from a pretrained version of the VGG-16 convolutional neural network for face recognition, we train it on the huge IMDB-Wiki d
Publikováno v:
Artificial Neural Networks and Machine Learning – ICANN 2016 ISBN: 9783319447803
ICANN (2)
Artificial Neural Networks and Machine Learning
ICANN 2016: 25th International Conference on Artificial Neural Networks
ICANN 2016: 25th International Conference on Artificial Neural Networks, Sep 2016, Barcelona, Spain. pp.161--169, ⟨10.1007/978-3-319-44781-0_20⟩
ICANN (2)
Artificial Neural Networks and Machine Learning
ICANN 2016: 25th International Conference on Artificial Neural Networks
ICANN 2016: 25th International Conference on Artificial Neural Networks, Sep 2016, Barcelona, Spain. pp.161--169, ⟨10.1007/978-3-319-44781-0_20⟩
International audience; Example-based methods have demonstrated their ability to perform well for Single Image Super-Resolution (SR). While very efficient when a single image formation model (non-blind) is assumed for the low-resolution (LR) observat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8636de4371d11c17fe631a817c62b0ce
https://doi.org/10.1007/978-3-319-44781-0_20
https://doi.org/10.1007/978-3-319-44781-0_20