Zobrazeno 1 - 10
of 257
pro vyhledávání: '"Moayedi S"'
Publikováno v:
Drug Design, Development and Therapy, Vol Volume 14, Pp 2405-2412 (2020)
Saeed Moayedi,1 Abbas Yadegar,2 Saeed Balalaie,3 Mahdiyeh Yarmohammadi,2 Mohammad Reza Zali,4 Hidekazu Suzuki,5 Gert Fricker,6 Ismaeil Haririan1 1Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, T
Externí odkaz:
https://doaj.org/article/481acf1bbdc5464dab25f585a886c3b2
Autor:
Nkadimeng, E., Mckenzie, R., Moayedi, S., Nemecek, S., Hadavand, H., Mellado, B., van Rensburg, R.
The ATLAS detector is set to undergo a substantial upgrade termed the "Phase-II" upgrade during the Long-Shutdown in preparation for the start of operation of the High Luminosity Large Hadron Collider (HL-LHC). This paper describes the development an
Externí odkaz:
http://arxiv.org/abs/2205.03374
Autor:
Ranaiy, M., Moayedi, S. K.
Recently a one-parameter extension of the covariant Heisenberg algebra with the extension parameter $l$ ($l$ is a non-negative constant parameter which has a dimension of $[momentum]^{-1}$) in a $(D+1)$-dimensional Minkowski space-time has been prese
Externí odkaz:
http://arxiv.org/abs/1904.03965
Autor:
Izadi, A., Moayedi, S. K.
Publikováno v:
Annals of Physics 411 (2019) 167956
In 2017, G. P. de Brito and co-workers suggested a covariant generalization of the Kempf-Mangano algebra in a $(D+1)$-dimensional Minkowski space-time [A. Kempf and G. Mangano, Phys. Rev. D \textbf{55}, 7909 (1997); G. P. de Brito, P. I. C. Caneda, Y
Externí odkaz:
http://arxiv.org/abs/1903.03765
In this note we consider the logarithmic curvature correction to Lifshitz and hyper scaling violation geometries. We investigate the effect of this correction to the gauge kinetic function f and the effective potential V . For the case of hyper scali
Externí odkaz:
http://arxiv.org/abs/1410.1032
In the 1990s, Kempf and his collaborators Mangano and Mann introduced a $D$-dimensional $(\beta,\beta')$-two-parameter deformed Heisenberg algebra which leads to an isotropic minimal length $(\triangle X^{i})_{min}=\hbar\sqrt{D\beta+\beta'}\;,\forall
Externí odkaz:
http://arxiv.org/abs/1306.1070
Publikováno v:
Adv. High Energy Phys. 2013, 657870 (2013)
In a series of papers, Quesne and Tkachuk (J. Phys. A: Math. Gen. \textbf{39}, 10909 (2006); Czech. J. Phys. \textbf{56}, 1269 (2006)) presented a $D+1$-dimensional $(\beta,\beta')$-two-parameter Lorentz-covariant deformed algebra which leads to a no
Externí odkaz:
http://arxiv.org/abs/1303.0100
Publikováno v:
2012 EPL 98 50001
In a series of papers, Kempf and co-workers (J. Phys. A: Math. Gen. {\bf 30}, 2093, (1997); Phys. Rev. D {\bf52}, 1108, (1995); Phys. Rev. D {\bf55}, 7909, (1997)) introduced a D-dimensional $(\beta,\beta')$-two-parameter deformed Heisenberg algebra
Externí odkaz:
http://arxiv.org/abs/1207.7170
In 2006 Quesne and Tkachuk (J. Phys. A: Math. Gen. {\bf 39}, 10909, 2006) introduced a (D+1)-dimensional $(\beta,\beta')$-two-parameter Lorentz-covariant deformed algebra which leads to a nonzero minimal length. In this work, the Lagrangian formulati
Externí odkaz:
http://arxiv.org/abs/1105.1900
Quantum Gravitational Corrections to the Real Klein-Gordon Field in the Presence of a Minimal Length
Publikováno v:
Int.J.Theor.Phys.49:2080-2088,2010
The (D+1)-dimensional $(\beta,\beta')$-two-parameter Lorentz-covariant deformed algebra introduced by Quesne and Tkachuk [C. Quesne and V. M. Tkachuk, J. Phys. A: Math. Gen. \textbf {39}, 10909 (2006).], leads to a nonzero minimal uncertainty in posi
Externí odkaz:
http://arxiv.org/abs/1004.0563