Zobrazeno 1 - 10
of 80
pro vyhledávání: '"Mladen Bestvina"'
Publikováno v:
Annales Henri Lebesgue. 6:65-94
Publikováno v:
International Mathematics Research Notices. 2023:5887-5904
We prove the Farrell–Jones conjecture (FJC) for mapping tori of automorphisms of virtually torsion-free hyperbolic groups. The proof uses recently developed geometric methods for establishing the FJC by Bartels–Lück–Reich, as well as the struc
Publikováno v:
Annales Henri Lebesgue. 4:685-709
We say that a finitely generated group $G$ has property (QT) if it acts isometrically on a finite product of quasi-trees so that orbit maps are quasi-isometric embeddings. A quasi-tree is a connected graph with path metric quasi-isometric to a tree,
Publikováno v:
Pacific Journal of Mathematics
Pacific Journal of Mathematics, Mathematical Sciences Publishers, 2020, 308 (1), pp.1-40
Pacific Journal of Mathematics, Mathematical Sciences Publishers, 2020, 308 (1), pp.1-40. ⟨10.2140/pjm.2020.308.1⟩
Pacific Journal of Mathematics, Mathematical Sciences Publishers, 2020, 308 (1), pp.1-40
Pacific Journal of Mathematics, Mathematical Sciences Publishers, 2020, 308 (1), pp.1-40. ⟨10.2140/pjm.2020.308.1⟩
We give upper bounds, linear in rank, to the topological dimensions of the Gromov boundaries of the intersection graph, the free factor graph and the cyclic splitting graph of a finitely generated free group.
Comment: 34 pages, 5 figures. Accept
Comment: 34 pages, 5 figures. Accept
Publikováno v:
L’Enseignement Mathématique. 65:1-32
We simplify the construction of projection complexes due to Bestvina-Bromberg-Fujiwara. To do so, we introduce a sharper version of the Behrstock inequality, and show that it can always be enforced. Furthermore, we use the new setup to prove acylindr
Publikováno v:
Algebr. Geom. Topol. 19, no. 1 (2019), 477-489
We show that the verbal width is infinite for acylindrically hyperbolic groups, which include hyperbolic groups, mapping class groups and Out ( F n ) .
Autor:
Arthur Bartels, Mladen Bestvina
Publikováno v:
Inventiones mathematicae. 215:651-712
We prove the Farrell–Jones Conjecture for mapping class groups. The proof uses the Masur–Minsky theory of the large scale geometry of mapping class groups and the geometry of the thick part of Teichmuller space. The proof is presented in an axiom
Autor:
Koji Fujiwara, Mladen Bestvina
Publikováno v:
Contemporary Mathematics. :29-50
Suppose subgroups $A,B < MCG(S)$ in the mapping class group of a closed orientable surface $S$ are given and let $\langle A, B \rangle$ be the subgroup they generate. We discuss a question by Minsky asking when $\langle A, B \rangle \simeq A*_{A \cap
Autor:
Kenneth Bromberg, Mladen Bestvina
Publikováno v:
Geom. Topol. 23, no. 5 (2019), 2227-2276
We give a bound, linear in the complexity of the surface, on the asymptotic dimension of the curve complex as well as the capacity dimension of the ending lamination space.
Comment: The main change in this version is that in a number of the lemm
Comment: The main change in this version is that in a number of the lemm
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6083b1483da20e92f54ef2dc8fa647b3
https://projecteuclid.org/euclid.gt/1571709624
https://projecteuclid.org/euclid.gt/1571709624
Autor:
Camille Horbez, Mladen Bestvina
Publikováno v:
Annales de l'Institut Fourier
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2019, 69 (6), pp.2395-2437
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2019, 69 (6), pp.2395-2437
We define a new compactification of outer space $CV_N$ (the \emph{Pacman compactification}) which is an absolute retract, for which the boundary is a $Z$-set. The classical compactification $\overline{CV_N}$ made of very small $F_N$-actions on $\math
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8b9c5e9dd80f2c6db80b37a85643e987
https://hal.archives-ouvertes.fr/hal-02112967
https://hal.archives-ouvertes.fr/hal-02112967