Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Miyuki K. Shimamura"'
Autor:
Tetsuo Deguchi, Miyuki K. Shimamura
Publikováno v:
Physical Knots: Knotting, Linking, and Folding Geometric Objects in ℝ³. :93-114
Autor:
Miyuki K. Shimamura, Tetsuo Deguchi
Publikováno v:
Journal of the Physical Society of Japan. 70:1523-1536
We discuss the entropy of a circular polymer under a topological constraint. We call it the {\it topological entropy} of the polymer, in short. A ring polymer does not change its topology (knot type) under any thermal fluctuations. Through numerical
Autor:
Tetsuo Deguchi, Miyuki K. Shimamura
Publikováno v:
Physics Letters A. 274:184-191
We discuss the probability of random knotting for a model of self-avoiding polygons whose segments are given by cylinders of unit length with radius $r$. We show numerically that the characteristic length of random knotting is roughly approximated by
Autor:
Tetsuo Deguchi, Miyuki K. Shimamura
Publikováno v:
Physical and Numerical Models in Knot Theory: Including Applications to the Life Sciences
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8888b96c52d1b967ec2d0f697a0189a6
https://doi.org/10.1142/9789812703460_0021
https://doi.org/10.1142/9789812703460_0021
Publikováno v:
Physical review. E, Statistical, nonlinear, and soft matter physics. 72(4 Pt 1)
We discuss the scattering function of a Gaussian random polygon with N nodes under a given topological constraint through simulation. We obtain the Kratky plot of a Gaussian polygon of N=200 having a fixed knot for some different knots such as the tr
Autor:
Tetsuo Deguchi, Miyuki K. Shimamura
One measure of geometrical complexity of a spatial curve is the number of crossings in a planar projection of the curve. For $N$-noded ring polymers with a fixed knot type, we evaluate numerically the average of the crossing number over some directio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a0aa712b056b326257a61f94c150b308
http://arxiv.org/abs/cond-mat/0211504
http://arxiv.org/abs/cond-mat/0211504
Autor:
Tetsuo Deguchi, Miyuki K. Shimamura
The probability of a random polygon (or a ring polymer) having a knot type $K$ should depend on the complexity of the knot $K$. Through computer simulation using knot invariants, we show that the knotting probability decreases exponentially with resp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7b57a3bb6260532c30e153f8091b9305
http://arxiv.org/abs/cond-mat/0207282
http://arxiv.org/abs/cond-mat/0207282
Autor:
Tetsuo Deguchi, Miyuki K. Shimamura
Publikováno v:
Physical review. E, Statistical, nonlinear, and soft matter physics. 65(5 Pt 1)
Several nontrivial properties are shown for the mean-square radius of gyration ${R}_{K}^{2}$ of ring polymers with a fixed knot type K. Through computer simulation, we discuss both finite size and asymptotic behaviors of the gyration radius under the
Autor:
Miyuki K. Shimamura, Tetsuo Deguchi
Publikováno v:
Physical review. E, Statistical, nonlinear, and soft matter physics. 64(2 Pt 1)
It is nontrivial whether the average size of a ring polymer should become smaller or larger under a topological constraint. Making use of some knot invariants, we evaluate numerically the mean square radius of gyration for ring polymers having a fixe