Zobrazeno 1 - 10
of 2 344
pro vyhledávání: '"Miyagaki A"'
In this paper, we consider a fractional p-Laplacian system of equations in the entire space RN with doubly critical singular nonlinearities involving a local critical Sobolev term together with a nonlocal Choquard critical term; the problem also incl
Externí odkaz:
http://arxiv.org/abs/2412.09650
For a generalization of the Gellerstedt operator with mixed-type Dirichlet boundary conditions to a suitable Tricomi domain, we prove the existence and uniqueness of weak solutions of the linear problem and for a generalization of this problem. The c
Externí odkaz:
http://arxiv.org/abs/2411.12116
For a generalization of the Gellerstedt operator with Dirichlet boundary conditions in a Tricomi domain. We establish Poho\v{z}aev-type identities and prove the nonexistence of nontrivial regular solutions. Furthermore, we investigate the critical ex
Externí odkaz:
http://arxiv.org/abs/2411.03970
Via a constrained minimization, we find a solution $(\lambda,u)$ to the problem \begin{equation*} \begin{cases} (-\Delta)^m u+\frac{\mu}{|x|^{2m}}u + \lambda u = \eta u^3 + g(u)\\ \int_{\mathbb{R}^{2m}} u^2 \, dx = \rho \end{cases} \end{equation*} wi
Externí odkaz:
http://arxiv.org/abs/2410.05885
Autor:
Assunção, Ronaldo Brasileiro, Miyagaki, Olímpio Hiroshi, Siqueira, Rafaella Ferreira dos Santos
In the present work, we consider a fractional p-Kirchhoff equation in the entire space R^N featuring doubly nonlinearities, involving a generalized nonlocal Choquard subcritical term together with a local critical Sobolev term; the problem also inclu
Externí odkaz:
http://arxiv.org/abs/2410.05185
In this paper, our primary objective is to develop the peridynamic fractional Sobolev space and establish novel BBM-type results associated with it. We also address the peridynamic fractional anisotropic $p-$Laplacian. A secondary objective is to exp
Externí odkaz:
http://arxiv.org/abs/2408.09170
Under simple hypotheses on the nonlinearity $f$, we consider the fractional harmonic operator problem \begin{equation}\label{abstr}\sqrt{-\Delta+|x|^2}\,u=f(x,u)\ \ \textrm{in }\ \mathbb{R}^N\end{equation} or, since we work in the extension setting $
Externí odkaz:
http://arxiv.org/abs/2408.01756
We are interested in finding prescribed $L^2$-norm solutions to inhomogeneous nonlinear Schr\"{o}dinger (INLS) equations. For $N\ge 3$ we treat the equation with combined Hardy-Sobolev power-type nonlinearities $$ -\Delta u+\lambda u=\mu|x|^{-b}|u|^{
Externí odkaz:
http://arxiv.org/abs/2407.09737
Autor:
Li, Haoyu, Miyagaki, Olímpio Hiroshi
In this paper, we study the sign-changing radial solutions of the following coupled Schr\"odinger system \begin{equation} \left\{ \begin{array}{lr} -{\Delta}u_j+\lambda_j u_j=\mu_j u_j^3+\sum_{i\neq j}\beta_{ij} u_i^2 u_j \,\,\,\,\,\,\,\, \mbox{in }B
Externí odkaz:
http://arxiv.org/abs/2401.15831
Autor:
Bahrouni, Sabri, Miyagaki, Olimpio
In this paper, we delve into the well-known concentration-compactness principle in fractional Orlicz-Sobolev spaces, and we apply it to establish the existence of a weak solution for a critical elliptic problem involving the fractional $g-$Laplacian.
Externí odkaz:
http://arxiv.org/abs/2312.03923