Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Mitsuhiko Takasawa"'
Publikováno v:
Algebr. Geom. Topol. 13, no. 6 (2013), 3537-3602
This paper concerns the set $\hat{\mathcal{M}}$ of pseudo-Anosovs which occur as monodromies of fibrations on manifolds obtained from the magic 3-manifold $N$ by Dehn filling three cusps with a mild restriction. We prove that for each $g$ (resp. $g \
Autor:
Eiko Kin, Mitsuhiko Takasawa
Publikováno v:
Communications in Analysis and Geometry. 19:705-758
We consider a hyperbolic surface bundle over the circle with the smallest known volume among hyperbolic manifolds having 3 cusps, so called "the magic manifold". We compute the entropy function on the fiber face of the unit ball with respect to the T
Publikováno v:
Experiment. Math. 18, iss. 4 (2009), 397-407
We discuss a comparison of the entropy of pseudo-Anosov maps and the volume of their mapping tori. Recent study of the Weil--Petersson geometry of Teichmüller space tells us that the entropy and volume admit linear inequalities for both directions u
Publikováno v:
Interdisciplinary Information Sciences. 9:35-42
We introduced an infinite sequence of L2-torsion invariants for surface bundles over S 1 in [5]. In this paper, we numerically calculate and observe the first two invariants for some torus bundles.
Autor:
Eiko Kin, Mitsuhiko Takasawa
Publikováno v:
J. Math. Soc. Japan 65, no. 2 (2013), 411-446
Let $\delta_g$ be the minimal dilatation for pseudo-Anosovs on a closed surface $\Sigma_g$ of genus $g$ and let $\delta_g^+$ be the minimal dilatation for pseudo-Anosovs on $\Sigma_g$ with orientable invariant foliations. This paper concerns the pseu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2faaa0eb2312359914dfd9791f9af821
Autor:
Eiko Kin, Mitsuhiko Takasawa
Publikováno v:
Kodai Math. J. 31, no. 1 (2008), 92-112
The dilatation of a pseudo-Anosov braid is a conjugacy invariant. In this paper, we study the dilatation of a special family of pseudo-Anosov braids. We prove an inductive formula to compute their dilatation, a monotonicity and an asymptotic behavior
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::27ede30dbf6e9ffeaf40a428475e8d05
http://arxiv.org/abs/0711.3009
http://arxiv.org/abs/0711.3009
Publikováno v:
J. Math. Soc. Japan 56, no. 2 (2004), 503-518
In the present paper, we introduce $L^{2}$ -torsion invariants $\tau_{k}(k\geq 1)$ for surface bundles over the circle and investigate them from the view point of the mapping class group of a surface. It is conjectured that they converge to the $L^{2
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::04578ad6ad190c4ebf0a71c885f38449
http://projecteuclid.org/euclid.jmsj/1191418642
http://projecteuclid.org/euclid.jmsj/1191418642
Publikováno v:
Proc. Japan Acad. Ser. A Math. Sci. 79, no. 4 (2003), 76-79
We introduced an infinite sequence of $L^2$-torsion invariants for surface bundles over the circle in [4]. In this note, we investigate in detail the first two terms for a torus bundle case. In particular, we show that the first invariant can be desc
Autor:
Mitsuhiko Takasawa, Kazushi Ahara
Publikováno v:
Experiment. Math. 9, iss. 3 (2000), 383-396
We present tables of conjugacy classes of the hyperelliptic mapping class group of genus 2 and 3, and some theorems on the Sp representation, the Jones representation, and Meyer's function.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c8d93665fb11e024dcedcb602f14fbc8
http://projecteuclid.org/euclid.em/1045604673
http://projecteuclid.org/euclid.em/1045604673