Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Mitsuhiko Ebata"'
Publikováno v:
Journal of Fourier Analysis and Applications. 12:1-15
We give a sampling formula using the Radon transform along a maximal geodesic subspace of the Riemannian symmetric space. For the real hyperbolic space we can get a total sampling formula. To get this formula, we prepare a sampling formula for the sp
Publikováno v:
Hiroshima Math. J. 36, no. 1 (2006), 125-140
Sampling theorems are one of the basic tools in information theory. The signal function f whose band–region is contained in a certain interval can be reconstructed from their values f ðxkÞ at the sampling points fxkg. We obtain analogues of this
Publikováno v:
Hiroshima Math. J. 32, no. 2 (2002), 337-349
M. G. Cowling and J. F. Price showed a generalization of Hardy’s theorem as follows. If v and w grow very rapidly, then the finiteness of kvf kp and kwf kq implies that f 1⁄4 0, where f denotes the Fourier transform of f . We give an analogue of
Autor:
Mitsuhiko Ebata
Publikováno v:
Hiroshima Math. J. 31, no. 3 (2001), 409-423
$C\epsilon^{-(J.\}}’ 2$ and $|.\hat{f}(y)|\leq Ce^{-by^{2}}$ and $ab> \frac{1}{4}$ then.f $=0(a.e.)$ . Here we use the Fourier transforlll defined $by.\hat{f}(y)=(1/\sqrt{2\pi})\int_{-(\infty}^{\iota\lambda^{\hat{\mathfrak{l}}}}f(x)e^{\sqrt{-1}x\cd
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f4fb3b89fc5fc16985d3dddd5af77964
http://projecteuclid.org/euclid.hmj/1151105728
http://projecteuclid.org/euclid.hmj/1151105728
Publikováno v:
Proc. Japan Acad. Ser. A Math. Sci. 75, no. 7 (1999), 113-114
Publikováno v:
Journal of Fourier Analysis & Applications; Feb2006, Vol. 12 Issue 1, p1-15, 15p