Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Mitchell order"'
Autor:
Gabriel Goldberg
Publikováno v:
The Journal of Symbolic Logic. 86:137-147
This paper establishes a conjecture of Steel [7] regarding the structure of elementary embeddings from a level of the cumulative hierarchy into itself. Steel’s question is related to the Mitchell order on these embeddings, studied in [5] and [7]. A
Autor:
Gabriel Goldberg
Publikováno v:
The Journal of Symbolic Logic. 85:585-604
We study a partial order on countably complete ultrafilters introduced by Ketonen [2] as a generalization of the Mitchell order. The following are our main results: the order is wellfounded; its linearity is equivalent to the Ultrapower Axiom, a prin
Publikováno v:
Fundamenta Mathematicae. 248:1-32
Smallish large cardinals $\kappa$ are often characterized by the existence of a collection of filters on $\kappa$, each of which is an ultrafilter on the subsets of $\kappa$ of some transitive $\mathrm{ZFC}^-$-model of size $ \kappa$. We introduce a
Autor:
Gabriel Goldberg
The inner model problem for supercompact cardinals, one of the central open problems in modern set theory, asks whether there is a canonical model of set theory with a supercompact cardinal. The problem is closely related to the more precise question
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a55d01d623ba09b13b373a74d9a405bb
https://doi.org/10.1515/9783110719734
https://doi.org/10.1515/9783110719734
Autor:
Arthur W. Apter
Publikováno v:
Tbilisi Mathematical Journal. 14
We show that assuming the consistency of certain large cardinals (namely a supercompact cardinal with a measurable cardinal above it of the appropriate Mitchell order) together with the Ultrapower Axiom UA introduced by Goldberg in [3], it is possibl
Autor:
Gunter Fuchs
Publikováno v:
Archive for Mathematical Logic. 57:273-284
It is shown that the Magidor forcing to collapse the cofinality of a measurable cardinal that carries a length $$\omega _1$$ sequence of normal ultrafilters, increasing in the Mitchell order, to $$\omega _1$$ , is subcomplete.
Autor:
Omer Ben-Neria, Sandra Müller
It is known that the behavior of the Mitchell order substantially changes at the level of rank-to-rank extenders, as it ceases to be well-founded. While the possible partial order structure of the Mitchell order below rank-to-rank extenders is consid
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ad0cea4db8d8c293249a29668e313b06
http://arxiv.org/abs/1908.10224
http://arxiv.org/abs/1908.10224
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Omer Ben-Neria
Publikováno v:
Israel Journal of Mathematics. 214:945-982
We isolate here a wide class of well-founded orders called tame orders, and show that each such order of cardinality at most κ can be realized as the Mitchell order on a measurable cardinal κ, from a consistency assumption weaker than o(κ) = κ+.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.