Zobrazeno 1 - 10
of 185
pro vyhledávání: '"Misra, Gadadhar"'
In this semi-expository article, we investigate the relationship between the imprimitivity introduced by Mackey several decades ago and commuting $d$- tuples of homogeneous normal operators. The Hahn-Hellinger theorem gives a canonical decomposition
Externí odkaz:
http://arxiv.org/abs/2402.15737
In this paper we propose a generalization of the Grothendieck inequality for pairs of Banach spaces $E$ and $F$ with $E$ being finite dimensional and investigate the behaviour of the Grothendieck constant $K_G(E,F)$ implicit in such an inequality. We
Externí odkaz:
http://arxiv.org/abs/2305.13270
Autor:
Ghosh, Sagar, Misra, Gadadhar
In this semi-expository short note, we prove that the only homogeneous \textit{pure} hyponormal operator $T$ with $\operatorname{rank} (T^*T-TT^*) =1$, modulo unitary equivalence, is the unilateral shift.
Comment: 11 pages
Comment: 11 pages
Externí odkaz:
http://arxiv.org/abs/2304.08021
Let $\Omega \subseteq \mathbb C^m$ be a bounded connected open set and $\mathcal H \subseteq \mathcal O(\Omega)$ be an analytic Hilbert module, i.e., the Hilbert space $\mathcal H$ possesses a reproducing kernel $K$, the polynomial ring $\mathbb C[\b
Externí odkaz:
http://arxiv.org/abs/2210.16912
Autor:
Ghara, Soumitra, Misra, Gadadhar
It has been recently shown that if $K$ is a sesqui-analytic scalar valued non-negative definite kernel on a domain $\Omega$ in $\mathbb C^m$, then the function $\big(K^2\partial_i\bar{\partial}_j\log K\big )_{i,j=1}^ m,$ is also a non-negative defini
Externí odkaz:
http://arxiv.org/abs/2202.02402
Let $\mathcal U(d)$ be the group of $d\times d$ unitary matrices. We find conditions to ensure that a $\mathcal U(d)$-homogeneous $d$-tuple $\boldsymbol T$ is unitarily equivalent to multiplication by the coordinate functions on some reproducing kern
Externí odkaz:
http://arxiv.org/abs/2201.13228
For a commuting $d$- tuple of operators $\boldsymbol T$ defined on a complex separable Hilbert space $\mathcal H$, let $\big [ \!\!\big [ \boldsymbol T^*, \boldsymbol T \big ]\!\!\big ]$ be the $d\times d$ block operator $\big (\!\!\big (\big [ T_j^*
Externí odkaz:
http://arxiv.org/abs/2012.11115
Autor:
Ghosh, Sagar1 sagarghosh1729@gmail.com, Misra, Gadadhar1,2 gm@isibang.ac.in
Publikováno v:
Opuscula Mathematica. 2024, Vol. 44 Issue 3, p391-407. 17p.
Autor:
Misra, Gadadhar, Upmeier, Harald
We study Toeplitz operators on Hilbert spaces of holomorphic functions on symmetric domains, and more generally on certain algebraic subvarieties, determined by integration over boundary orbits of the underlying domain. The main result classifies the
Externí odkaz:
http://arxiv.org/abs/1912.00674
A bounded linear operator $T$ on a Hilbert space is said to be homogeneous if $\varphi(T)$ is unitarily equivalent to $T$ for all $\varphi$ in the group M\"{o}b of bi-holomorphic automorphisms of the unit disc. A projective unitary representation $\s
Externí odkaz:
http://arxiv.org/abs/1907.04038