Zobrazeno 1 - 10
of 132
pro vyhledávání: '"Mishra, Satyendra Kumar"'
We study structural, magnetic and magneto-thermal properties of GdRhIn compound. The room temperature X-ray diffraction measurements show hexagonal crystal structure. Temperature and field dependence of magnetization suggest two magnetic transitions
Externí odkaz:
http://arxiv.org/abs/2409.02083
The notion of Poisson dialgebras was introduced by Loday. In this article, we propose a new definition with some modifications that is supported by several canonical examples coming from Poisson algebra modules, averaging operators on Poisson algebra
Externí odkaz:
http://arxiv.org/abs/2311.13826
Publikováno v:
Journal of Algebra 641 (2024) 268-306
Lie-Yamaguti algebras generalize both the notions of Lie algebras and Lie triple systems. In this paper, we consider the inducibility problem for automorphisms of extensions of Lie-Yamaguti algebras. More precisely, given an abelian extension $$0 \to
Externí odkaz:
http://arxiv.org/abs/2306.12937
Autor:
Das, Apurba, Mishra, Satyendra Kumar
A relative Rota-Baxter algebra is a generalization of a Rota-Baxter algebra. Relative Rota-Baxter algebras are closely related to dendriform algebras. In this paper, we introduce bimodules over a relative Rota-Baxter algebra that fits with the repres
Externí odkaz:
http://arxiv.org/abs/2207.10954
A Rota-Baxter Lie algebra $\mathfrak{g}_T$ is a Lie algebra $\mathfrak{g}$ equipped with a Rota-Baxter operator $T : \mathfrak{g} \rightarrow \mathfrak{g}$. In this paper, we consider non-abelian extensions of a Rota-Baxter Lie algebra $\mathfrak{g}_
Externí odkaz:
http://arxiv.org/abs/2204.01060
Publikováno v:
In Linear Algebra and Its Applications 15 December 2024 703:556-583
Publikováno v:
In Journal of Algebra 1 March 2024 641:268-306
Let $B$ be a commutative algebra and $A$ be a $B$-algebra (determined by an algebra homomorphism $\varepsilon:B\rightarrow A$). M. D. Staic introduced a Hochschild like cohomology $H^{\bullet}((A,B,\varepsilon);A)$ called secondary Hochschild cohomol
Externí odkaz:
http://arxiv.org/abs/2102.07095
Autor:
Das, Apurba, Mishra, Satyendra Kumar
A relative Rota-Baxter algebra is a triple $(A, M, T)$ consisting of an algebra $A$, an $A$-bimodule $M$, and a relative Rota-Baxter operator $T$. Using Voronov's derived bracket and a recent work of Lazarev et al., we construct an $L_\infty [1]$-alg
Externí odkaz:
http://arxiv.org/abs/2008.11076
$\mathcal{O}$-operators (also known as relative Rota-Baxter operators) on Lie algebras have several applications in integrable systems and the classical Yang-Baxter equations. In this article, we study $\mathcal{O}$-operators on hom-Lie algebras. We
Externí odkaz:
http://arxiv.org/abs/2007.09440