Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Misbah Ikram"'
Autor:
Misbah Ikram, Hongbo Liu, Ahmed Mohammed Sami Al-Janabi, Ozgur Kisi, Wang Mo, Muhammad Ali, Rana Muhammad Adnan
Publikováno v:
Water, Vol 16, Iss 21, p 3038 (2024)
For the accurate estimation of daily influent total nitrogen of sewage plants, a novel hybrid approach is proposed in this study, where a gradient-based optimization (GBO) algorithm is employed to adjust the hyper-parameters of an adaptive neuro-fuzz
Externí odkaz:
https://doaj.org/article/3def96f4515a4351b062ce41807e092e
Autor:
Rana Muhammad Adnan, Zhihuan Chen, Xiaohui Yuan, Ozgur Kisi, Ahmed El-Shafie, Alban Kuriqi, Misbah Ikram
Publikováno v:
Entropy, Vol 22, Iss 5, p 547 (2020)
The study investigates the potential of two new machine learning methods, least-square support vector regression with a gravitational search algorithm (LSSVR-GSA) and the dynamic evolving neural-fuzzy inference system (DENFIS), for modeling reference
Externí odkaz:
https://doaj.org/article/5c70ad392029422a92cfd7852c0d8f3e
Autor:
Nada Alfryyan, Misbah Ikram, Alina Manzoor, Akmal Jamil, Z.A. Alrowaili, M.S. Al-Buriahi, Amna Irshad, Muhammad Imran Din
Publikováno v:
Physica B: Condensed Matter. 660:414885
Autor:
Ozgur Kisi, Xiaohui Yuan, Misbah Ikram, Ahmed El-Shafie, Zhihuan Chen, Rana Muhammad Adnan, Alban Kuriqi
Publikováno v:
Entropy
Volume 22
Issue 5
Entropy, Vol 22, Iss 547, p 547 (2020)
Volume 22
Issue 5
Entropy, Vol 22, Iss 547, p 547 (2020)
The study investigates the potential of two new machine learning methods, least-square support vector regression with a gravitational search algorithm (LSSVR-GSA) and the dynamic evolving neural-fuzzy inference system (DENFIS), for modeling reference