Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Misao Nagayama"'
Publikováno v:
Electronic Notes in Theoretical Computer Science. 161:43-57
We give a category-theoretic formulation of Engeler-style models for the untyped λ-calculus. In order to do so, we exhibit an equivalence between distributive laws and extensions of one monad to the Kleisli category of another and explore the exampl
Autor:
Misao Nagayama, Mitsuhiro Okada
Publikováno v:
Theoretical Computer Science. 294:551-573
It is well known that every proof net of a non-commutative version of MLL (multiplicative fragment of commutative linear logic) can be drawn as a plane Danos–Regnier graph (drawing) satisfying the switching condition of Danos–Regnier [3]. In this
Autor:
Misao Nagayama, Mitsuhiro Okada
Publikováno v:
Journal of Symbolic Logic. 66:1524-1542
This paper presents a new correctness criterion for marked Danos-Reginer graphs (D-R graphs, for short) of Multiplicative Cyclic Linear Logic MCLL and Abrusci's non-commutative Linear Logic MNLL.As a corollary we obtain an affirmative answer to the o
Autor:
Oliveira Vale, Arthur1 arthur.oliveiravale@yale.edu, Shao, Zhong1 zhong.shao@yale.edu, Chen, Yixuan1 yixuan.chen@yale.edu
Publikováno v:
Journal of the ACM. Apr2024, Vol. 71 Issue 2, p1-107. 107p.
Autor:
Misao Nagayama
Publikováno v:
Studia Logica. 53:227-234
A BCK-algebra is an algebra in which the terms are generated by a set of variables, 1, and an arrow. We mean by aBCK-identity an equation valid in all BCK-algebras. In this paper using a syntactic method we show that for two termss andt, if neithers=
Autor:
Misao Nagayama
Publikováno v:
Journal of Symbolic Logic. 57:1305-1318
In this paper we consider properties, related to model-completeness, of the theory of integrally closed commutative regular rings. We obtain the main theorem claiming that in a Boolean algebra B, the truth of a prenex Σn-formula whose parameters ai,
Autor:
Mitsuhiro Okada, Misao Nagayama
Publikováno v:
Electronic Notes in Theoretical Computer Science. :153
It is well-known that every proof net of a non-commutative version of MLL (Multiplicative fragment of Commutative Linear Logic) can be drawn as a plane Danos-Regnier graph (drawing) satisfying the switching condition of Danos-Regnier [3]. In this pap
Autor:
Komori, Yuichi
Publikováno v:
Studia Logica; Sep1994, Vol. 53 Issue 3, p397-416, 20p
Autor:
Komori, Yuichi
Publikováno v:
Studia Logica; September 1994, Vol. 53 Issue: 3 p397-416, 20p
Autor:
Humberstone, Lloyd1 Lloyd.Humberstone@arts.monash.edu.au, Meyer, Robert K.2 bob.meyer@anu.edu.au
Publikováno v:
Logic Journal of the IGPL. Mar2007, Vol. 15 Issue 2, p165-181. 17p.