Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Mirzaeifard, Reza"'
Distributed sensors in the internet-of-things (IoT) generate vast amounts of sparse data. Analyzing this high-dimensional data and identifying relevant predictors pose substantial challenges, especially when data is preferred to remain on the device
Externí odkaz:
http://arxiv.org/abs/2408.05640
In the rapidly evolving internet-of-things (IoT) ecosystem, effective data analysis techniques are crucial for handling distributed data generated by sensors. Addressing the limitations of existing methods, such as the sub-gradient approach, which fa
Externí odkaz:
http://arxiv.org/abs/2408.01307
This paper investigates quantile regression in the presence of non-convex and non-smooth sparse penalties, such as the minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD). The non-smooth and non-convex nature of these problem
Externí odkaz:
http://arxiv.org/abs/2309.03094
This paper proposes a proximal variant of the alternating direction method of multipliers (ADMM) for distributed optimization. Although the current versions of ADMM algorithm provide promising numerical results in producing solutions that are close t
Externí odkaz:
http://arxiv.org/abs/2308.16752
This paper addresses the problem of localization, which is inherently non-convex and non-smooth in a federated setting where the data is distributed across a multitude of devices. Due to the decentralized nature of federated environments, distributed
Externí odkaz:
http://arxiv.org/abs/2308.16737
Autor:
Tavassolipour, Mostafa, Karamzade, Armin, Mirzaeifard, Reza, Motahari, Seyed Abolfazl, Shalmani, Mohammad-Taghi Manzuri
A central machine is interested in estimating the underlying structure of a sparse Gaussian Graphical Model (GGM) from datasets distributed across multiple local machines. The local machines can communicate with the central machine through a wireless
Externí odkaz:
http://arxiv.org/abs/1812.10437
Publikováno v:
Web of Science
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.