Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Miroslav S. Pranić"'
Publikováno v:
Numerical Algorithms. 88:1937-1964
This paper is concerned with the approximation of matrix functionals of the form wTf(A)v, where $A\in \mathbb {R}^{n\times n}$ is a large nonsymmetric matrix, $\boldsymbol {w},\boldsymbol {v}\in \mathbb {R}^{n}$ , and f is a function such that f(A) i
Autor:
Miroslav S. Pranić, Stefano Pozza
Publikováno v:
Numerical Algorithms. 88:647-678
The concept of Gauss quadrature can be generalized to approximate linear functionals with complex moments. Following the existing literature, this survey will revisit such generalization. It is well known that the (classical) Gauss quadrature for pos
Publikováno v:
Journal of Computational and Applied Mathematics. 396:113604
Many functionals of a large symmetric matrix of interest in science and engineering can be expressed as a Stieltjes integral with a measure supported on the real axis. These functionals can be approximated by quadrature rules. Golub and Meurant propo
Publikováno v:
Numerical Linear Algebra with Applications. 23:1007-1022
Summary The rational Arnoldi process is a popular method for the computation of a few eigenvalues of a large non-Hermitian matrix A∈Cn×n and for the approximation of matrix functions. The method is particularly attractive when the rational functio
Publikováno v:
Electronic transactions on numerical analysis 50 (2018): 1–19. doi:10.1553/etna_vol50s1
info:cnr-pdr/source/autori:Pozza S.; Pranic M.S.; Strakos Z./titolo:The lanczos algorithm and complex gauss quadrature/doi:10.1553%2Fetna_vol50s1/rivista:Electronic transactions on numerical analysis/anno:2018/pagina_da:1/pagina_a:19/intervallo_pagine:1–19/volume:50
info:cnr-pdr/source/autori:Pozza S.; Pranic M.S.; Strakos Z./titolo:The lanczos algorithm and complex gauss quadrature/doi:10.1553%2Fetna_vol50s1/rivista:Electronic transactions on numerical analysis/anno:2018/pagina_da:1/pagina_a:19/intervallo_pagine:1–19/volume:50
Gauss quadrature can be naturally generalized in order to approximate quasi-definite linear functionals, where the interconnections with (formal) orthogonal polynomials, (complex) Jacobi matrices, and the Lanczos algorithm are analogous to those in t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9d500d35799164779941f4e2fd1c820d
http://www.cnr.it/prodotto/i/424337
http://www.cnr.it/prodotto/i/424337
Autor:
Miroslav S. Pranić, Lothar Reichel
Publikováno v:
Journal of Computational and Applied Mathematics. 284:235-243
Gauss quadrature is a popular approach to approximate the value of a desired integral determined by a measure with support on the real axis. Laurie proposed an ( n + 1 ) -point quadrature rule that gives an error of the same magnitude and of opposite
Autor:
Lothar Reichel, Miroslav S. Pranić
Publikováno v:
SIAM Journal on Numerical Analysis. 52:832-851
The existence of (standard) Gauss quadrature rules with respect to a nonnegative measure $d\mu$ with support on the real axis easily can be shown with the aid of orthogonal polynomials with respect to this measure. Efficient algorithms for computing
Autor:
Miroslav S. Pranić, Lothar Reichel
Publikováno v:
Numerische Mathematik. 123:629-642
It is well known that members of families of polynomials, that are orthogonal with respect to an inner product determined by a nonnegative measure on the real axis, satisfy a three-term recursion relation. Analogous recursion formulas are available f
Publikováno v:
Applied Mathematics and Computation. 218:5746-5756
We continue with the study of the kernels K n ( z ) in the remainder terms R n ( f ) of the Gaussian quadrature formulae for analytic functions f inside elliptical contours with foci at ∓1 and a sum of semi-axes ρ > 1. The weight function w of Ber
Publikováno v:
Applied Numerical Mathematics. 60:1-9
This paper is concerned with bounds on the remainder term of the Gauss-Turan quadrature formula,R"n","s(f)=@!-11f(t)w(t)dt-@?@n=1n@?i=02s@l"i","@nf^(^i^)(@t"@n), wherew(t)=w"n","@?(t)=[U"n"-"1(t)/n]^2^@?(1-t^2)^@?^-^1^/^2(@?@?N),U"n"-"1 denotes the (