Zobrazeno 1 - 10
of 52
pro vyhledávání: '"Miroslav Krbec"'
Publikováno v:
Journal of Function Spaces and Applications, Vol 6, Iss 3, Pp 259-276 (2008)
Our concern in this paper lies with trace spaces for weighted Sobolev spaces, when the weight is a power of the distance to a point at the boundary. For a large range of powers we give a full description of the trace space.
Externí odkaz:
https://doaj.org/article/7652b2475166464bb59d40a5bae01aff
Autor:
Miroslav Krbec
Publikováno v:
Le Matematiche, Vol 54, Iss 3, Pp 95-109 (1999)
See directly the article.
Externí odkaz:
https://doaj.org/article/e8e0ecbc68094c9babc9de032407c2a6
Autor:
Alberto Fiorenza, Miroslav Krbec
Publikováno v:
Journal of Function Spaces and Applications, Vol 2012 (2012)
We study noneffective weights in the framework of variable exponent Lebesgue spaces, and we show that Lp(⋅)(Ω)=Lωp(⋅)(Ω) if and only if ω(x)1/p(x)~constant in the set where p(⋅)
Externí odkaz:
https://doaj.org/article/28809814c9044b2a84c0ffbbdc23351d
Publikováno v:
Fixed Point Theory and Applications, Vol 2010 (2010)
First the characteristic of monotonicity of any Banach lattice X is expressed in terms of the left limit of the modulus of monotonicity of X at the point 1. It is also shown that for Köthe spaces the classical characteristic of monotonicity is the s
Externí odkaz:
https://doaj.org/article/4607adfa262d49a1b503fdfdfe1da9e3
Publikováno v:
Banach J. Math. Anal. 11, no. 3 (2017), 636-660
We are interested in the widest possible class of Orlicz functions $\Phi$ such that the easily calculable quasinorm $[f]_{\Phi,p}:=\Vert f\Vert_{E}\{I_{\Phi}(\frac{f}{\Vertf\Vert_{E}})\}^{1\slash p}$ if $f\neq0$ and $[f]_{\Phi,p}=0$ if $f=0$ , on the
Publikováno v:
Mathematische Nachrichten. 289:1466-1487
We consider the linearized and nonlinear problems arising from the motion of fluid flow around a rotating rigid body. We are interested in very weak solutions of these problems.
Publikováno v:
Aequationes mathematicae. 90:249-261
Geometric properties being the rearrangement counterparts of strict monotonicity, lower local uniform monotonicity and upper local uniform monotonicity in some symmetric spaces are considered. The relationships between strict monotonicity, upper loca
Autor:
Agnieszka Kałamajska, Miroslav Krbec
Publikováno v:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 144:787-807
We study the boundary-value problem ũt = Δxũ(x,t), ũ(x, 0) = u(x), where x ∈ Ω, t ∈ (0,T), Ω ⊆ ℝn−1 is a bounded Lipschitz boundary domain, u belongs to a certain Orlicz–Slobodetskii space YR,R(Ω). Under certain assumptions on the
Autor:
Agnieszka Kałamajska, Miroslav Krbec
Publikováno v:
Mathematische Nachrichten. 286:730-742
We prove an estimate for the trace operator in spaces whose weak derivatives are in Orlicz spaces without constraints upon the growth of the generating Young function. This extends the known trace theorems established in Orlicz-Sobolev spaces, where
Autor:
Miroslav Krbec, Hans-Jürgen Schmeisser
Publikováno v:
Revista Matemática Complutense. 25:247-265
We prove dimension-invariant imbedding theorems for Sobolev spaces using extrapolation means.