Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Mirko Tarulli"'
Publikováno v:
Mathematics, Vol 12, Iss 19, p 2975 (2024)
We will explore, in any space dimension d≥4, the decay in the energy space for the damped magnetic Schrödinger equation with non-local nonlinearity and radial initial data in H1(Rd). We will also display new Morawetz identities and corresponding l
Externí odkaz:
https://doaj.org/article/2e412f474ff1484b9b1c1a31f426061c
Autor:
Mirko Tarulli, George Venkov
Publikováno v:
Mathematics, Vol 12, Iss 1, p 8 (2023)
We present a generalized version of a Gagliardo–Nirenberg inequality characterized by radial symmetry and involving potentials exhibiting pure power polynomial behavior. As an application of our result, we investigate the existence of extremals for
Externí odkaz:
https://doaj.org/article/69a85261f3bc4d2fa7fd581827697a82
Autor:
Mirko Tarulli
Publikováno v:
Electronic Journal of Differential Equations, Vol 2004, Iss 146, Pp 1-14 (2004)
In this note we prove some estimates for the resolvent of the operator $-Delta$ perturbed by the differential operator $$ V(x,D)=ia(x)cdot abla+V(x)quad hbox{in }mathbb{R}^3,. $$ This differential operator is of short range type and a compact perturb
Externí odkaz:
https://doaj.org/article/fd21a99a8577418cb6c30a92e36d48dd
Publikováno v:
Proceedings of the Bulgarian Academy of Sciences. 75:1559-1572
We prove, in any space dimension d≥3, the decay in the energy space for the defocusing Schrödinger–Hartree (SCH) equations with mass-energy intercritical non-local nonlinearities and perturbed by a potential. We will show also new Morawetz inequ
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783031214837
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::618c2e33c515a677500a6446fd507e72
https://doi.org/10.1007/978-3-031-21484-4_12
https://doi.org/10.1007/978-3-031-21484-4_12
Autor:
Mirko Tarulli, George Venkov
Publikováno v:
Journal of Evolution Equations. 21:1149-1178
We prove decay with respect to some Lebesgue norms for a class of Schrodinger equations with non-local nonlinearities by showing new Morawetz inequalities and estimates. As a byproduct, we obtain large-data scattering in the energy space for the solu
Autor:
Mirko Tarulli, George Venkov
Publikováno v:
Journal of Mathematical Analysis and Applications. 516:126533
We prove the decay in the energy space for the solution to the defocusing biharmonic Hartree-Fock equations with mass-supercritical and energy-subcritical Choquard-type nonlinearity in space dimension $d\geq3$. We treat both the free and the perturbe
Publikováno v:
Nonlinear Analysis. 179:131-145
We study the p -Choquard equation in R n , n ≥ 3 and establish existence and uniqueness of ground states for the corresponding Weinstein functional. For proving the uniqueness of ground states, we use the radial symmetry to transform the equation i
Publikováno v:
THERMOPHYSICAL BASIS OF ENERGY TECHNOLOGIES (TBET 2020).
We present new extended Strichartz estimates for the solutions to the heat equation, perturbed with a time dependent potential V : ℝ+ ℝd → ℝ, satisfying appropriate space and time integrability conditions (i.e. bounded with respect to some La
Autor:
Mirko Tarulli
Publikováno v:
Analysis. 37:117-131
We study the nonlinear Schrödinger equation posed on product spaces ℝ n × ℳ k {{\mathbb{R}}^{n}\times{\mathcal{M}}^{k}} , for n ≥ 1 {n\geq 1} and k ≥ 1 {k\geq 1} , with ℳ k {{\mathcal{M}}^{k}} any k-dimensional compact Riemannian manifold