Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Mirko Knaak"'
Improving Semi-Supervised Learning for Remaining Useful Lifetime Estimation Through Self-Supervision
Publikováno v:
International Journal of Prognostics and Health Management, Vol Vol. 13, Iss No.1 (2022)
RUL estimation plays a vital role in effectively scheduling maintenance operations. Unfortunately, it suffers from a severe data imbalance where data from machines near their end of life is rare. Additionally, the data produced by a machine can only
Externí odkaz:
https://doaj.org/article/b0da868afc2e4c419378d008dcb9545c
Improving Semi-Supervised Learning for Remaining Useful Lifetime Estimation Through Self-Supervision
RUL estimation suffers from a server data imbalance where data from machines near their end of life is rare. Additionally, the data produced by a machine can only be labeled after the machine failed. Semi-Supervised Learning (SSL) can incorporate the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::41a112f5c43af4313ce62d125de0ce58
http://arxiv.org/abs/2108.08721
http://arxiv.org/abs/2108.08721
Publikováno v:
ICPHM
Unsupervised Domain Adaption (DA) is an approach for adapting a data-driven model to new data without labels. Recent work on Remaining Useful Lifetime (RUL) estimation of aero engines yielded promising results for this approach. However, the current
Publikováno v:
ATZ - Automobiltechnische Zeitschrift. 120:96-103
Publikováno v:
ATZ worldwide. 120:94-101
Publikováno v:
MTZ worldwide. 78:70-75
Publikováno v:
MTZ - Motortechnische Zeitschrift. 78:74-78
Publikováno v:
ATZextra. 21:26-31
Publikováno v:
The Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines. :129-134
Publikováno v:
MTZ - Motortechnische Zeitschrift. 68:276-282